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Figure 1. (a) Top: contrast between prior methods [4, 79] and BA-SAM. For large-scale datasets, previous approaches often resize images
or change patch sizes to handle the issue of varying resolutions. In contrast, we propose a Scalable Bias-Mode Attention Mask (BA-SAM),
which enhances SAM’s adaptability to varying image resolutions while eliminating structure modifications. Bottom (left): We introduce
a generalized model that does not require any task-specific designs, yet outperforms state-of-the-art methods across four datasets. Bottom
(right): With resolution variations, prior models’ performance degrades drastically. Instead, BA-SAM consistently alleviates this issue.

Abstract
In this paper, we address the challenge of image resolu-

tion variation for the Segment Anything Model (SAM). SAM,
known for its zero-shot generalizability, exhibits a perfor-
mance degradation when faced with datasets with varying
image sizes. Previous approaches tend to resize the image
to a fixed size or adopt structure modifications, hindering
the preservation of SAM’s rich prior knowledge. Besides,
such task-specific tuning necessitates a complete retrain-
ing of the model, which is cost-expensive and unaccept-
able for deployment in the downstream tasks. In this paper,
we reformulate this issue as a length extrapolation prob-
lem, where token sequence length varies while maintain-
ing a consistent patch size for images of different sizes. To
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this end, we propose Scalable Bias-Mode Attention Mask
(BA-SAM) to enhance SAM’s adaptability to varying image
resolutions while eliminating the need for structure modi-
fications. Firstly, we introduce a new scaling factor to en-
sure consistent magnitude in the attention layer’s dot prod-
uct values when the token sequence length changes. Sec-
ondly, we present a bias-mode attention mask that allows
each token to prioritize neighboring information, mitigating
the impact of untrained distant information. Our BA-SAM
demonstrates efficacy in two scenarios: zero-shot and fine-
tuning. Extensive evaluation on diverse datasets, including
DIS5K, DUTS, ISIC, COD10K, and COCO, reveals its abil-
ity to significantly mitigate performance degradation in the
zero-shot setting and achieve state-of-the-art performance
with minimal fine-tuning. Furthermore, we propose a gen-
eralized model and benchmark, showcasing BA-SAM’s gen-
eralizability across all four datasets simultaneously.
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1. Introduction
Recently, the computer vision community [9, 22, 26, 29–
31, 49, 50, 58, 66, 74, 83–90] has experienced a surge in
the development of various foundation models [21, 35, 54].
Notably, Meta has introduced SAM (Segment Anything
Model) [38], a prompt model that has made a significant
impact. SAM can segment any object in an image or video
by incorporating a single visual prompt, such as a box
or a point, without requiring additional training. SAM is
trained on an extensive SA-1B dataset [38], consisting of
over 11 million images and one billion masks. Its emer-
gence has undeniably showcased robust generalization ca-
pabilities across diverse images and objects, paving the way
for new possibilities and avenues in intelligent image analy-
sis and understanding [8, 34, 76, 79]. Based on SAM, Some
variants have been proposed, such as MobileSAM [76] and
SAM-Adapter [8]. These efforts typically focus on improv-
ing SAM’s performance on specific datasets.

During the pre-training of SAM [38], the input image
size is fixed at 1024. As a foundational model, SAM is ex-
pected to exhibit generalization capabilities across various
downstream tasks, each associated with datasets featuring
different image sizes. This is particularly crucial for high-
resolution (HQ) datasets characterized by larger dimensions
and more details. SAM performs well when the resolutions
align with its training resolution of 1024. However, signif-
icant performance degradation is observed when inferring
with resolutions larger than 1024. Hence, we aim to study
a practical and realistic problem to enhance SAM’s adapt-
ability to varying image resolutions of different datasets.

Since SAM adopts the standard Vision Transformer [14]
architecture, there are two common approaches to address
the inconsistency between training and inference sizes for
the ViT architecture. As depicted in Figure 1, the first ap-
proach, e.g., MSA [79] and SAM-Adapter [8], involves di-
rectly resizing all datasets to match a predefined size. Con-
versely, the second approach, exemplified by FlexiViT [4],
entails adjusting the patch size to accommodate larger im-
age resolutions. Nevertheless, tuning the image or patch
size necessitates a complete retraining of the model, which
is cost-expensive and unacceptable for deployment in the
downstream tasks. Besides, it prevents leveraging the rich
prior knowledge reserved in the pre-trained model of SAM.
As such, our objective is to explore a solution that enhances
SAM’s adaptability to datasets of varying resolutions while
avoiding structural modifications to SAM.

In this paper, we introduce a novel perspective that re-
frames the challenge of image resolution variation as a
length extrapolation problem. Specifically, as depicted in
Figure 1, for images of varying sizes, we employ differ-
ent token sequence lengths while keeping a consistent patch
size. It has been observed that the inconsistency in token
length between training and prediction is a key factor in per-

formance degradation. This inconsistency manifests in two
aspects: Firstly, changes in token length lead to variations
in the magnitude of attention module values. When the dot
product result becomes significantly large in magnitude, it
can drive the subsequent Softmax layer into regions with
minimal gradients. Consequently, the attention distribution
after Softmax becomes highly concentrated, giving rise to
the issue of vanishing gradients. Secondly, longer predic-
tions rely on untrained information, such as additional po-
sition encodings. The introduction of untrained parameters
brings a considerable amount of noise to the model, which,
in turn, affects its performance.

To address these issues, we propose a Scalable Bias-
Mode Attention Mask (BA-SAM) to enhance the length
extrapolation capability of SAM. Our approach introduces
two novel designs. Firstly, to ensure consistency in the at-
tention layer’s dot product value, we present an improved
scaling factor. This factor effectively regulates the magni-
tude of values within the attention layer, mitigating disrup-
tive effects resulting from substantial changes in dot prod-
uct operations and context length. Secondly, with a focus
on maintaining consistency in attention focus areas, we in-
troduce a novel bias-mode attention mask. This attention
mask penalizes attention scores between distant query-key
pairs, with the penalty increasing as the distance between
the key and query grows. Consequently, when the context
length varies, the influence of untrained distant information
on each token diminishes. We achieve this mask by adding
a bias after the query-key dot product, and this design is
highly lightweight and could be seamlessly integrated into
SAM-based models with minimal computational overhead.

Our approach demonstrates efficacy in two scenar-
ios: zero-shot and fine-tuning. Extensive evaluation on
datasets from five diverse tasks are conducted, including
DIS5K [53], DUTS [64], ISIC [12], COD10K [16], and
COCO [45]. These datasets vary in resolution, mostly ex-
ceeding SAM’s default resolution of 1024. In the zero-shot
setting, our BA-SAM alleviates the model’s performance
degradation caused by expanding the inference resolution
without requiring any additional training. With a few fine-
tuning epochs on downstream tasks, our BA-SAM consis-
tently achieves state-of-the-art accuracy across all datasets.
Additionally, to further demonstrate BA-SAM’s generaliz-
ability, we propose a generalized model and a new bench-
mark, which utilize one model to attain state-of-the-art per-
formance across all four datasets simultaneously.

2. Related Work
Visual Foundation Models. Models that are trained on
broad and can be adapted to numerous downstream tasks
are called “Foundation Models” [5, 43, 67]. These models,
Vision-Language Models (VLM) (CLIP [54] and DALL-
E [55]) combine computer vision and natural language pro-

2



cessing to understand and generate descriptions or analyze
visual content using textual and visual information. Masked
Image Modeling [48, 73] (MIM) refers to a technique where
parts of an image are masked during training to encourage
a model to learn contextual information and complete miss-
ing regions. SAM [38] is a model designed for segmenting
objects or areas in images, offering precise segmentation
capabilities. In this paper, we use a variant of SAM called
MobileSAM [76] as the baseline method. As our design op-
timizes the Transformer itself, it applies to all Transformer-
based vision foundation models.
Resolution Variation Processing. To enable models to
be more adaptable to variations in resolutions, traditional
methods to deal with VIT have relied on adjustments to po-
sitional embeddings [40] and patch sizes [4, 6, 24, 30, 39,
44, 75]. Patch n’ Pack [13] employed sequence packing
during training to handle inputs with arbitrary resolutions
and aspect ratios. All of them necessitate training from
scratch, incurring substantial computational and time costs.
In contrast to previous approaches, we extend the concept
of ’length extrapolation’ from NLP into the context of ad-
dressing scale variations in CV. Length extrapolation refers
to a model’s ability to generalize well to longer inputs than
those it was trained on. In NLP, it has been successfully
used, such as in ALIBI [52] and KERPLE [11], to enable
models to adapt to longer sequences without significant per-
formance degradation. Our approach seamlessly extends
to two scenarios: zero-shot and finetuning, allowing us to
leverage prior knowledge embedded in the SAM and sig-
nificantly reduce training efforts.
Parameter Efficient Tuning. There have been some pio-
neering works for the Parameter Efficient Tuning (PETL) of
visual models, such as AdaptFormer [7] and visual prompt
tuning (VPT) [36]. He et al. [28] analyzed the unified view
among PETL techniques such as prefixtuning [42], Prompt-
tuning [36], and adapter [7]. Our method belongs to the
category of Parameter Efficient Tuning.
Visual Attention Modeling. Various studies have incor-
porated attention mechanisms into neural network archi-
tectures designed for visual tasks [3, 33, 41, 63, 68, 93].
These mechanisms are employed in a channel-wise man-
ner to capture cross-feature information [10, 66, 80]. They
are also used for selecting paths in different branches of
a network [61], or a combination of both strategies [78].
For instance, squeeze-and-excite network [32] features an
attention-like module for modeling channel-wise relation-
ships within layer features. Li et al. [41] utilize the at-
tention mechanism to adapt the receptive field of neurons
between network branches. The advent of transformers
has led to hybrid architectures that integrate other mod-
ules. Bello’s work [2] introduces approximate content at-
tention with a positional attention component. Child et
al. [69] observe that many early layers in the network learn

locally connected patterns akin to convolutions, indicat-
ing that hybrid architectures inspired by both transform-
ers and convolutional networks are a compelling design
choice. Several recent studies explore this approach for var-
ious tasks [25, 59, 65, 70]. In contrast to prior work, we do
not introduce a new attention structure. Instead, we offer
theoretical proof for optimizing existing attention mecha-
nisms. This resulting optimization approach is applicable
across various attention designs and demonstrates strong
performance across multiple datasets.

3. Preliminaries

SAM. Segment Anything Model (SAM) [38] consists of
three core modules: image encoder, prompt encoder, and
mask decoder. The SAM model has been trained on the ex-
tensive SA-1B dataset [38], which comprises more than 1
billion automatically generated masks. This dataset con-
tains 400 times more masks than any existing segmenta-
tion dataset (COCO [45], LVIS [27] and ADE20K [82])
and is accompanied by 11 million images and 1 billion
masks. Consequently, SAM exhibits valuable and robust
zero-shot generalization to new data without necessitating
further training. For further details regarding the SAM
methodology, readers are encouraged to refer to [38]. Our
Scalable Bias-Mode Attention Mask (BA-SAM) focuses its
optimization on the image encoder while keeping the struc-
tures of the mask decoder and prompt encoder unchanged.
Scaling Factor in Attention. The two most commonly
used attention functions are additive attention [1] and dot-
product attention [62]. The vanilla Transformer chooses
dot-product attention because it is much faster and more
space-efficient in practice. However, for large values of the
dimension of the tokens dk, the dot products grow large in
magnitude, pushing the softmax function into regions with
minimal gradients. They use the scaling factor λd = 1√

dk

to scale the dot products. To better analyze the role of the
scaling factor, we express the output element Oi and the
weight coefficient ai,j as follows:

Oi =

N∑
j=1

ai,jxjvj , ai,j =
eλdqi·kj∑N
j=1 e

λdqi·kj

, (1)

where λd represents the scaling factor.
Absolute & Relative Position Encoding in Attention.
The original Transformer [62] incorporates absolute non-
parametric positional encoding p = (p1, . . . , pn) with the
input token embedding x as xi = xi + pi, where pi, xi ∈
Rdx . Other works replace them with parametric encod-
ing [23] or adopted Fourier-based kernelized versions [51].
Absolute position encoding enforces a fixed size for all in-
puts. Recent work [56] considers the pairwise relationships
between elements. Relative relation is important for tasks
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Figure 2. Illustration of the proposed BA-SAM method. (a) In the original SAM, when input token sequences length varies during testing,
the magnitude of the Softmax outputs changes drastically. In contrast, we propose a new scaling factor to address this issue. (b) We
introduce a bias-mode attention mask, which produces increasing penalties on attention scores as the distance between query and key
grows.

where the relative ordering or distance of the elements mat-
ters. This method encodes the relative position between in-
put elements xi and xj into vectors pvi,j , p

q
i,j , p

k
i,j ∈ Rdz .

Then, we reformulate Eq. (1) as follows:

Oi =

n∑
j=1

ai,j
(
xjvj + pvi,j

)
, (2)

ai,j =
eλ(qi+pq

i,j)·(kj+pk
i,j)∑n

j=1 e
λ(qi+pq

i,j)·(kj+pk
i,j)

, (3)

where pvi,j , p
q
i,j , p

k
i,j is learned during training.

4. Methodology
From the above section, it is evident that the original SAM’s
design has a substantial limit to handling the length extrap-
olation problem. To address this, as shown in Figure 2, we
present a Scalable Bias-mode Attention Mask (BA-SAM).
In Sec. 4.1, we provide a theoretical explanation for the
scaling factor used in the original Transformer and intro-
duce a new scaling factor to regulate the magnitude incon-
sistency caused by length extrapolation. In Sec. 4.2 we de-
sign a bias-mode attention mask to place more focus on
neighboring tokens, ensuring the sensitivity of the model
when meeting positional encoding variations. Finally, we
explain how we will embed our proposed BA-SAM into the
SAM-based structure in Sec. 4.3.

4.1. New Scaling Factor

We discovered from the original attention module in
SAM [62] that when the dot product becomes significantly
large in magnitude, it can drive the Softmax layer into
regions with minimal gradients. This is because the at-
tention distribution after Softmax becomes highly concen-
trated, giving rise to the issue of vanishing gradients. Upon

closer examination of Eq. (1), it is obvious that the compu-
tation of the q · k term is intrinsically tied to both the token
sequences length N and the dimension dk. When the token
sequence length N and/or the dimension dk significantly
increases, the overall efficacy of the attention is impacted,
thus leading to a noticeable performance reduction.

To address this, we attempt to design a new scaling fac-
tor that allows the model to cope with significant variations
in N and dk values. When N or dk grows significantly,
we expect to regulate the magnitude of the values within
the attention layer, maintaining a similar magnitude. While
[62] introduced a scaling factor λ = 1√

dk
to counteract the

effect of the large growth in magnitude due to the dot prod-
ucts, the authors did not explain how this scaling factor was
designed in the original paper. Below we will provide a the-
oretical derivation of this scaling factor, and then elaborate
on our proposed new scaling factor.
The dimension dk. We assume that the components of q
and k are independent Gaussian distribution variables with
mean 0 and variance 1, then we want to prove that the q · k
has mean 0 and variance dk. The mean of q · k is:

E[q · k] = E

[
dk∑
i=1

qiki

]
=

dk∑
i=1

E [qi] E [ki] = 0 (4)

Similarly, we formulate the variance of q · k as follows:

var[q · k] = var

[
dk∑
i=1

qiki

]
=

dk∑
i=1

var [qi] var [ki] = dk

(5)
Given this, we can approximately consider the q · k val-

ues to be within the range of −3
√
dk to 3

√
dk, according to

properties of Gaussian distribution. For larger models, dk
is generally a larger positive value, resulting in a significant
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increase in the magnitude of numerical values of q ·k, com-
pared to the additive attention option which has the range of
[−3, 3]. Consequently, the attention distribution after Soft-
max becomes highly concentrated. This leads to severe gra-
dient vanishing, which in turn hampers the effectiveness of
training and can lead to less desired performance. As the
q · k values lie in the range of [−3

√
dk, 3

√
dk], the scal-

ing factor can be simply defined as λd = 1√
dk

, in order to
maintain a similar magnitude.
Our new scaling factor. We provided the interpretation
on how the original scaling factor was designed, which has
been overlooked by the original authors. Now we explain
the design of our new scaling factor.

Our goal is to regulate the magnitude of the Softmax
value aij (Eq. (1)) as the token sequences length N and
the dimension dk change. We further denote the token se-
quences length during the training as Ntrain and the to-
ken sequence length during the testing as Ntest, where
Ntest >> Ntrain. We now consider how to maintain a sim-
ilar magnitude of aij during training and testing times. We
introduce the scaling factor λN , which is related to N and
controls the output scale of the Softmax value aij , namely,
S(aNtest

i,j ) = S(aNtrain
i,j ). Here, S() represents the scale es-

timation function.
We next substitute Eq. (1) into S(aNtest

i,j ) = S(aNtrain
i,j ),

and simplify qi · kj into xi,j provided the magnitude of q · k
has been already maintained. Now we have:

S(
eλnxi,j∑n
j=1 e

λnxi,j
) = S(

exi,j∑m
j=1 e

xi,j
)

⇒ S(eλn) = S(
Ntest

Ntrain
) ⇒ λn = logNtrainNtest

(6)

Considering both λd and λn, we can ultimately derive
our new scaling factor as:

λ = λdλn =
logNtrain

Ntest√
dk

(7)

Our new scaling factor in Eq. (7) ensures the magnitude
of values during attention computation remains consistent,
regardless of variations in dk and N . It will enhance the
extrapolative capacity of the model.

4.2. Bias-Mode Attention Mask

Another challenge is that changes in token sequence length
will lead to variations in positional encoding. It is important
to ensure the insensitivity of the model when such positional
encoding variations occur during testing.

One possible way is absolute encoding without trainable
parameters, such as Sinusoidal [62]. It requires the posi-
tion encoding to have strong local-to-global inference ca-
pabilities. As mentioned by Su [60], this resembles Tay-
lor series approximations: by knowing the values of several

derivatives at a particular point, effective estimates can be
made within a neighborhood. Nevertheless, this assumes
that the given function has high-order smoothness (higher-
order derivatives exist and are bounded). Commonly used
positional encodings are often combined with trigonometric
functions, essentially high-frequency oscillatory functions
with periodicity. However, these methods fail to satisfy the
requirement of bounded high-order derivatives, making it
less accurate to estimate the extrapolated results.

Another potential approach is using local attention,
which constrains the model’s field of view and remains
insensitive to variations in token sequence length. How-
ever, local attention is typically implemented using a local
window, necessitating modifications to the SAM structure,
which requires re-training from scratch and is unacceptable
for deployment in the downstream tasks.

To this end, we propose to enable the attention layer to
put more focus on neighboring tokens of the current token.
As such, even with an increase in the length of a token se-
quence, each token is scarcely affected by the untrained to-
kens from distant positions. In particular, we design a sim-
ple yet effective bias-mode mask. We introduce a bias after
the query-key dot product.

As shown in Figure 3, this mask exhibits a bias specified
on the distance between the query-key pairs (i.e., q · k). We
expect that this proposed mask imposes penalties on atten-
tion scores between distant query-key pairs, and the penalty
increases as the distance between a key q and a query k
grows. To this end, we simply define the bias as the form of
bi,j = β|i− j|.

ai,j =
eλ(qi·kj+bi,j)∑n
j=1 e

λ(qi·kj+bi,j)
, (8)

where β is a head-specific slope.
We further discuss the setting of β based on different

cases. When conducting zero-shot transfer learning without
fine-tuning, we set β to a static, non-learned fixed value.
The specific value setting will be discussed in the experi-
mental section (Sec. 5). When fine-tuning is required, we
make β trainable. Since our Bias-Mode Attention Mask is
lightweight relative to the model structure, it incurs negligi-
ble training time overhead.

4.3. BA-SAM Model

As shown in Figure 3, our BA-SAM is simple to imple-
ment, and can be seamlessly integrated into SAM [38] and
its variants. Specifically, our design involves a new scaling
factor (NSF) for the attention layer and a bias-mode atten-
tion mask (BM-AM). Our method does not involve any al-
terations to the model structure and is suited to both fine-
tuning and non-fine-tuning cases. As for the fine-tuning
case, it introduces negligible computational overhead as
BM-AM incurs a very small amount of computation.
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Figure 3. Embedding of our BA-SAM into a SAM backbone.
NSF indicates our new scaling factor, and BM-AM denotes our
designed bias-mode attention mask.

5. Experiments

We first describe the datasets and implementation details in
Sec. 5.1. Then, we compare BA-SAM’s performance with
state-of-the-art methods across multiple tasks in Sec. 5.2.
Finally, extensive ablation studies and analysis are con-
ducted in Sec. 5.3. to demonstrate the effectiveness.

5.1. Datasets and Implementations

Datasets. For a comprehensive evaluation of BA-SAM,
we conduct extensive experiments on a wide range of seg-
mentation tasks, i.e., salient object segmentation [15, 18,
20], complex object segmentation [19], skin lesion seg-
mentation [93], camouflaged object detection [17], which
correspond to four datasets: DUTS [64], DIS-TE4 [53],
ISIC [12] and COD10K [16]. Besides, we also verify it on
the challenging COCO [45] instance segmentation bench-
mark. More details about datasets can be referred to in the
supplementary material.
Implementation Details. In zero-shot settings that do
not require fine-tuning, we use the original SAM [38]
backbone. For fine-tuning scenarios, we employ Mobile-
SAM [76] as the backbone. MobileSAM [76] is a SAM
variant with a structure similar to ViT-Tiny [72], and fur-
ther details can be found in [76]. MobileSAM [76] uses
a ViT-H-based SAM as a teacher network for distillation,
ultimately achieving competitive accuracy compared to the
original SAM but with significantly fewer parameters. For
various object segmentation tasks, a random point is ex-
tracted from the ground truth as the prompt input during
the fine-tuning phase. For instance segmentation, we use
the ViT-B [14] backbone and the state-of-the-art detector
Deformable-DETR [91] trained on the COCO [45] dataset
with Swin-L [47] backbone as box prompt generator. More
details are provided in the supplementary material. The
code will be released at this link.
Evaluation metrics. In the experiments, we use the widely
used Mean Absolute Error (MAE) and Average Precision
(AP) for evaluation. A lower MAE score and a higher AP
score indicate better model performance.

5.2. Results

Results of Various Object Segmentation Tasks: Table 1
demonstrates the effectiveness of our approach across four
diverse segmentation datasets. ∆diff denotes the value of
the performance degradation due to resolution changes dur-
ing the inference. The upper and lower parts of the table in-
dicate the results without and with fine-tuning, respectively
due to input resolution variations. The best MAE perfor-
mance is highlighted in bold, and the smallest degradation
is underlined. We have three observations: Firstly, our pro-
posed BA-SAM consistently outperforms both SAM [38]
and MobileSAM [76] baselines on all four datasets. This
is mainly because these baselines do not consider the is-
sue of varying image resolutions. In contrast, our presented
scaling factor and bias-mode attention mask explicitly han-
dle this issue and further alleviate the performance degra-
dation. Secondly, when testing on higher resolutions than
the training size, SAM [38] and MobileSAM [76] base-
lines show less desirable results than the original image size.
In contrast, our BA-SAM incurs significantly less perfor-
mance drop in different datasets. Thirdly, during the ex-
periment, we observe negligible computational overhead,
whether fine-tuning is applied or not, which supports the
claim in the method section. See Sec. 5.3 for details.
Results of Instance Segmentation: In Table 3, we evalu-
ate the performance of our method on the COCO [45] in-
stance segmentation benchmark. For a fair comparison, all
experiments are conducted in a zero-shot manner, with the
same initialization parameters for the comparative methods
and without the use of any additional training data. Our
BA-SAM consistently outperforms SAM [38] and Mobile-
SAM [76] baselines, demonstrating better zero-shot gener-
alization capability on instance segmentation.
Comparisons with State-of-the-Art Methods: To further
demonstrate the superiority of the effectiveness and gen-
eralizability of our method, we compare the state-of-the-
art approaches in Table 2. From the table, we have two
following observations: Firstly, all the state-of-the-art ap-
proaches [16, 37, 46, 53, 57, 77, 81, 92] show less-desirable
performances in each dataset. Instead, our BA-SAM (spe-
cialized models) consistently outperforms these methods
when fine-tuned on each downstream dataset. Secondly,
almost all of these state-of-the-art techniques are specifi-
cally designed for one task and cannot be generalized well
to other tasks. Due to the strong zero-shot generalization
capability of SAM [38], our proposed BA-SAM can also be
employed as a generalized model, which fine-tunes with all
of these downstream datasets in a unified and shared model.
Importantly, unlike [12, 46, 57, 77], we eliminate the need
for employing additional techniques to further enhance the
performance. As shown in Table 2, our generalized model
also consistently promotes the performance of SAM on all
datasets, demonstrating its remarkable generalizability.
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Figure 4. Visualization results of our BA-SAM on four object segmentation tasks, i.e., skin lesion segmentation, salient object segmentation,
complex object segmentation, camouflaged object detection, which corresponds to four datasets: ISIC [12], DUTS [64], DIS-TE4 [53],
and COD10K [16]. Our BA-SAM can handle the issue of varying image resolutions and segments accurately in different tasks.

Method
Train
Size

Test
Size ISIC [12] ∆diff DUTS [64] ∆diff DIS-TE4 [53] ∆diff COD10K [16] ∆diff

Without fine-tuning

SAM [38] - 1024 0.421 - 0.298 - 0.362 - 0.217 -
- 2048 0.601 18.0% 0.360 6.2% 0.411 4.9% 0.391 17.4%

Ours (w [38]) - 1024 0.417 - 0.294 - 0.356 - 0.208 -
- 2048 0.589 17.2% 0.348 5.4% 0.406 5.0% 0.387 17.9%

MobileSAM [76]
- 1024 0.463 - 0.502 - 0.544 - 0.465 -
- 2048 0.641 17.8% 0.437 6.5% 0.427 11.7% 0.346 11.9%

4096 0.693 23.0% 0.328 17.4% 0.355 18.9% 0.300 16.5%

Ours (w [76])
- 1024 0.452 - 0.486 - 0.515 - 0.440 -
- 2048 0.611 15.9% 0.413 7.3% 0.406 10.9% 0.321 11.9%

4096 0.657 20.5% 0.283 20.3% 0.361 15.4% 0.246 19.4%

With fine-tuning

MobileSAM [76]
1024

1024 0.098 - 0.034 - 0.057 - 0.030 -
2048 0.520 42.2% 0.082 4.8% 0.065 0.8% 0.063 3.3%
4096 0.542 44.4% 0.235 20.1% 0.101 4.4% 0.138 10.8%

2048 2048 0.083 - 0.045 - 0.056 - 0.036 -
4096 0.227 14.4% 0.091 4.6% 0.066 1.0% 0.059 2.3%

Ours (w [76])
1024

1024 0.037 - 0.031 - 0.055 - 0.029 -
2048 0.499 40.4% 0.078 4.4% 0.061 0.6% 0.057 2.5%
4096 0.531 43.6% 0.226 19.2% 0.098 4.3% 0.118 8.6%

2048 2048 0.080 - 0.043 - 0.053 - 0.033 -
4096 0.214 13.4% 0.088 4.4% 0.061 0.8% 0.056 2.3%

Table 1. Performance comparisons in varying image resolutions. We employed the widely-used MAE (Mean Absolute Error) score.
Lower MAE scores indicate better model accuracy. ∆diff denotes the performance degradation due to resolution changes. Compared
to the SAM [38] and MobileSAM [76] baselines, our BA-SAM achieves smaller degradation when encountering token sequences length
changes. The best MAE performance is highlighted in bold, and the smallest performance degradation is underlined.

5.3. Ablation Study and Analysis

In this section, we first conduct ablation studies to study
the contribution of each component. Then, we investigate
the impact of the new scaling factor (NSF) and bias-mode
attention mask (BM-AM) with a more detailed analysis.
Ablations Studies of Each Component. Table 4 sum-

marizes the effect of each designed component on the set-
tings with and without fine-tuning, respectively. The base-
line means using the MobileSAM [76] as the base network
that uses the vanilla scaling factor (VSF) in the attention
layer [62]. New Scaling Factor and Bias-Mode Attention
Mask are abbreviated as NSF and BM-AM, respectively.
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Methods ISIC [12] DUTS [64] DIS-TE4 [53] COD10K [16]

Specialized models
CASS [57] 0.086 - - -
DINO [77] 0.081 - - -
MSA [71] 0.049 - - -

VST21 [46] - 0.037 - -
ICONet22 [92] - 0.037 - -

Gate20 [81] - - 0.109 -
IS-Net [53] - - 0.072 -
SINet [16] - - - 0.092

SegMaR22 [37] - - - 0.034
the same framework, 4 specialized models

Ours (BA-SAM) 0.037 0.031 0.055 0.029
generalized model

SAM [38] 0.419 0.298 0.373 0.217
Ours (BA-SAM) 0.054 0.030 0.054 0.054

Table 2. Comparison results (MAE) with state-of-the-art special-
ized models on various segmentation tasks.

Model AP AP50 AP75 APS APM APL

SAM [38] 42.5 69.6 44.7 29.7 47.0 56.7
Ours (w [38]) 43.0 70.0 45.4 30.0 47.6 57.4

MobileSAM [76] 40.8 68.4 41.6 26.0 44.4 57.6
Ours (w [76]) 41.6 69.0 42.3 26.2 44.8 58.4

Table 3. Results (AP) on COCO [45] instance segmentation.

From the table, we observe that NSF could achieve superior
performances than the baseline with VSF. This is because
the vanilla attention in SAM [38] and MobileSAM [76]
does not consider maintaining the magnitude consistency
of the Softmax outputs changes drastically when input res-
olutions vary during testing. In contrast, our NSF explicitly
maintains the magnitude consistency and alleviates the per-
formance degradation. Furthermore, by adding BM-AM,
the performance could be further boosted when extrapolat-
ing to a larger test length. These improvements confirm
that these individual components are complementary and
together they significantly promote the performance.
Impact of Slope in Bias-Mode Attention Mask. In the
Bias-Mode Attention Mask, the magnitude of the slope β
determines penalty rates in different heads. In the zero-shot
case, we use a fixed slope. Table 5 reveals the impact of
different slopes of BM-AM on the ISIC [12] dataset. We
found that the best performance is achieved when β = 0.1.
Besides, our method is robust to different slope choices. In
addition to the zero-shot setting, we also validate the BM-
AM in fine-tuning scenarios on four datasets, shown in Ta-
ble 1. The learnable parameters brought more performance
growth compared with the fixed slope, while also bringing
a slight increase in computation.
Computational Efficiency. In Table 6, we analyze
the computational efficiency between the baselines and
our BA-SAM. All the experiments are conducted on the
same NVIDIA RTX 4090GPU to ensure fair comparisons.
From the table, we observe that our BA-SAM is highly

Methods ISIC [12] DUTS [64] DIS-TE4 [53] COD10K [16]

Without fine-tuning
Baseline [76] 17.8 6.5 11.7 11.9
+ NSF 16.4 7.5 11.3 12.0
+ BM-AM 16.8 7.2 11.7 11.9
+ Both 15.9 7.9 10.9 11.9

With fine-tuning (1024)
Baseline [76] 42.2 4.8 0.8 3.3
+ NSF 40.9 4.6 0.7 3.0
+ BM-AM 41.2 4.5 0.8 2.7
+ Both 40.4 4.4 0.6 2.5

With fine-tuning (2048)
Baseline [76] 14.4 4.6 1.0 2.3
+ NSF 13.1 4.6 0.8 2.4
+ BM-AM 13.7 4.5 0.9 2.3
+ Both 13.4 4.4 0.8 2.3

Table 4. Ablation study of each component on the settings with
and without fine-tuning. Numbers indicate the performance degra-
dation, ∆diff. A lower ∆diff means a better performance.

Size 0.1 0.5 1 1.5 2 2.5

MAE 0.0375 0.0383 0.0381 0.0393 0.0388 0.0391
∆diff 40.4 40.8 40.4 40.9 41.2 40.7

Table 5. Impact of the slope β in BM-AM (zero-shot setting).

Model Params (M) Speed (ms) Train Hours (h)

SAM [38] 81 113.9 -
Ours (w [38]) 81 114.0 -

MobileSAM [76] 9.66 16.2 0.64
Ours (w [76]) 9.67 16.5 0.65

Table 6. Comparisons of computational efficiency between the
baselines and our BA-SAM. Params: number of parameters.
Speed: inference speed. The top part is performed on the zero-
shot setting, and the bottom part is the scenarios with fine-tuning.

lightweight, incurring negligible computational overhead
for the models. The reasons lie in two aspects: firstly,
the NSF exhibits nearly identical computational complex-
ity with the vanilla one. Besides, the BM-AM is seamlessly
incorporated by adding a mask matrix to the query-key dot
product before applying the softmax operation. Although
there is a slight increase in memory usage, it remains negli-
gible compared to the memory occupied by large models.

6. Conclusion

In this paper, we address the important problem of varying
image resolutions in SAM models by reformulating it as a
problem of length extrapolation. To enhance the length ex-
trapolation capability of SAM, we propose Scalable Bias-
mode Attention Mask (BA-SAM). A new scaling factor
(NSF) is introduced to maintain the consistent magnitude
of attention. In addition, a bias-mode attention mask (BM-
AM) is designed to prioritize neighboring information, mit-
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igating the impact of untrained distant information. Ex-
tensive evaluation on diverse datasets reveals its ability to
significantly alleviate performance degradation in the zero-
shot setting and achieve state-of-the-art performance with
minimal fine-tuning. Furthermore, we proposed a general-
ized model and benchmark, showcasing BA-SAM’s gener-
alizability across all four datasets simultaneously.
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