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ABSTRACT
Human motion generation aims to produce plausible human mo-
tion sequences according to various conditional inputs, such as text
or audio. Despite the feasibility of existing methods in generating
motion based on short prompts and simple motion patterns, they
encounter difficulties when dealing with long prompts or complex
motions. The challenges are two-fold: 1) the scarcity of human
motion-captured data for long prompts and complex motions. 2)
the high diversity of human motions in the temporal domain and
the substantial divergence of distributions from conditional modali-
ties, leading to a many-to-many mapping problem when generating
motion with complex and long texts. In this work, we address these
gaps by 1) elaborating the first dataset pairing long textual descrip-
tions and 3D complex motions (HumanLong3D), and 2) proposing
an autoregressive motion diffusionmodel (AMD). Specifically, AMD
integrates the text prompt at the current timestep with the text
prompt and action sequences at the previous timestep as condi-
tional information to predict the current action sequences in an
iterative manner. Furthermore, we present its generalization for
X-to-Motion with “No Modality Left Behind”, enabling for the first
time the generation of high-definition and high-fidelity human
motions based on user-defined modality input.

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding.
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1 INTRODUCTION
Human motion generation is a crucial task in computer animation
and has applications in various fields including gaming, robots, and
film. Traditionally, new motion is accessed through motion capture
in the gaming industry, which can be costly. As a result, automati-
cally generating motion from textual descriptions or audio signals
can be more time-efficient and cost-effective. Related research work
is currently flourishing, exploring human motion generation from
different modalities [25, 49, 50, 55].

Current text-based conditional human motion synthesis ap-
proaches have demonstrated plausible mapping from text to motion
[11, 34, 49, 54, 55]. They are mainly divided into three categories:
Latent space strategy [1, 34, 48]: This is typically done by separately
learning a motion Variational AutoEncoder (VAE) [21] and a text
encoder, and then constraining them to a compatible latent space
using the Kullback-Leibler (KL) divergence loss. However, since
the distributions of natural language and human motion are vastly
different, forcibly aligning these two simple Gaussian distributions
can result in misalignments and diminished generative diversity.
Diffusion-based approach [49, 52, 55]: diffusion models [15, 45]
have recently attracted significant attention and have shown re-
markable breakthroughs in various areas such as video [27], image
[38], and 3D point cloud generation [13], etc. Current motion gener-
ation methods based on diffusion models [49, 52, 55] have achieved
exceptional results using different denoising strategies.

Typically, MDM [49] proposes a motion diffusion model on raw
motion data to learn the relationship between motion and text
conditions. However, these models tend to only generate single
motions or contain several motion sequences and are often inef-
ficient for complex long texts. Autoregressive method [4, 10, 33]:
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they can process varying motion lengths, tackling the issue of fixed
motion duration. However, their single-step generation methods
often rely on traditional VAE models [21], which are less effective
than diffusion models. Despite the progress made by existing meth-
ods, text-based conditional human motion generation remains a
challenging task for several reasons:
• Lack of enough motion-captured data: At present, there are few
widely used text-to-motion datasets [11, 35, 36], which mostly
contain simple motions and are deficient in long prompts, i,e.,
"he is flying kick with his left leg".

• Weak correlation: Due to the differing distributions of natural
language and human motion, resulting in a multiple mapping
problem [49]. This issue is further exacerbated when generating
long text-based human motions.
To address the aforementioned limitations and challenges, we

propose Autoregressive Motion Diffusion model (AMD) that can
generate motion sequences with complex long content, variable
duration, and multiple modalities. It leverages the generative capa-
bilities of the diffusion model and the temporal modeling strengths
of the autoregressive model. Considering the high dimensionality
of complex long motion sequences, in order to better capture the
dependencies between texts and motions in long sequences, AMD
combines the text description at the current timestep with the text
description and motion information at the previous timestep as
conditional information to predict the motion sequence at the cur-
rent timestep. AMD continuously employs the diffusion method to
synthesize the corresponding motion sequence from the previous
timestep and finally can generate the motion sequences of all texts.
To address the scarcity of human motion-captured data for long
prompts and complex motions, we have developed HumanLong3D
- the first dataset to pair long textual descriptions with complex 3D
human motions, i.e., "A person is doing martial art action raising
knees and stretching feet, and then the person performs step for-
ward with his right foot". The dataset comprises 158,179 textual
descriptions and 43,696 3D human motions. It encompasses a broad
spectrum of complex motion types. Importantly, it features anno-
tations for motion coherence. In addition, we have also developed
the HumanMusic dataset to evaluate the generation effect across
different modalities. This dataset pairs 137,136 motions with corre-
sponding audio data and follows the format of the HumanML3D
dataset [11]. The codes for AMD and demos can be found in the
supplementary materials.

In summary, our contributions include:
• We propose a novel continuous autoregressive diffusion model
for generating complex and variable motions on long texts.

• We construct two large-scale cross-modal 3D human motion
datasets HumanLong3D and HumanMusic, which could serve
as the benchmarks for future cross-modal motion generation.

• Our proposed AMD achieves impressive performances on
the HumanML3D, HumanLong3D, AIST, and HumanMusic
datasets, which highlights its ability to generate high-fidelity
motion given inputs with different modalities.

2 RELATEDWORK
Human motion generation has been an active area of research for
many years [5]. Early work in this field focused on unconditional

motion generation [18, 30, 40], with some studies attempting to
predict future motion based on an initial pose or starting motion
sequence [8, 32]. Statistical models such as Principal Component
Analysis (PCA) [31] and Motion Graphs [29] were commonly used
for these generative tasks. The development of deep learning has
led to the emergence of an increasing number of sophisticated
generative architectures [9, 14, 20, 21, 51]. These advanced gener-
ative models have encouraged researchers to explore conditional
motion generation. Conditional human motion generation can be
modulated by a variety of signals that describe the motion, with
high-level guidance provided through various means such as action
classes [34], audio [3], and natural language [1, 34].

2.1 Text-To-Motion
Due to the language descriptors are the most user-friendly and con-
venient. Text-to-motion has been driving and dominating research
frontiers. In recent years, the leading approach for the Text-to-
Motion task is to learn a shared latent space for language and
motion. JL2P [1] learns from the KIT-ML dataset [35] with an auto-
encoder, limiting one-to-one mapping from text to motion. TEMOS
[1] and T2M [11] propose using a VAE [21] to map a text prompt
into a normal distribution in latent space. Recently, MotionCLIP
[48] has leveraged the shared text-image latent space learned by
CLIP to expand text-to-motion beyond data limitations and enable
latent space editing. However, due to the inconsistency of the two
data distributions of natural language and human motion, it is very
difficult to align them in the shared latent space. Diffusion Genera-
tive Models [44] achieve significant success in the image synthesis
domain, such as Imagen [42], DALL2 [38] and Stable Diffusion [39].
Inspired by their works, most recent methods [49, 52, 55] leverage
diffusion models for human motion synthesis. MotionDiffuse [55]
is the first work to generate human motion that corresponds to text
utilizing a diffusion model. Recently, MDM [49] has been proposed,
which operates on raw motion data to learn the relationship be-
tween motion and input conditions. Inspired by Stable Diffusion
[39], MLD [52] implements the human motion diffusion process
in the latent space. Despite their ability to produce exceptional
results, these models are typically limited to short text descriptions
and simple motions. Additionally, several works [4, 10, 33] have
been developed based on the concept of autoregression, which
can generate human actions of any length. Consequently, for long
text prompts, we combine the advantages of the diffusion model
in generating motion for short text descriptions with the concept
of autoregression to achieve superior human motion results for
continuous long text.

2.2 Motion Datasets
Common forms of description for human motion data are 2D key-
points, 3D keypoints, and statistical model parameters [6, 53]. For
the text-conditioned motion generation task, KIT [35] is the first 3D
human motion dataset with matching text annotations for each mo-
tion sequence. HumanML3D [11] provides more textual annotation
for some motions of AMASS [28]. They are also our focus in the
text-to-motion task. Babel [36] also collects motions from AMASS
[28] and provides action and behavior annotations, it annotates
each frame of the action sequence, thereby dividing compound
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Figure 1: Overview of the Autoregressive Motion Diffusion model (AMD). Given the current timestep text prompt 𝑆𝑖 (A man
is kicking his legs), the last timestep text prompt 𝑆𝑖−1, and motion 𝑋 𝑖−1

0 (green arrow), we first encode the context information
(blue block). Then, we feed the input conditions and corrupted motion 𝑋 𝑖

𝑇
to Motion Diffusion Mudule (Figure. 2) to generate

the original cleaned motion 𝑋 𝑖
0. Afterward, we send the current timestep text prompt 𝑆𝑖 and motion 𝑋 𝑖

0 to the next time step.
Iteratively, we can obtain motion sequences for long text prompts.

actions into simple action groups. In this paper, we use the Hu-
manML3D dataset to evaluate the proposed methods for simple
motions and short prompts. In addition, we collected and labeled
pairs of complex motion data and text prompts (HumanLong3D).
More importantly, we provided temporal motion-coherence infor-
mation to support long text-to-motion generation tasks.

2.3 Audio-To-Motion
Generating natural and realistic human motion from audio is also
a challenging problem. Many early approaches follow a motion re-
trieval paradigm [7, 23]. A traditional approach to motion synthesis
involves constructing motion maps. New motions are synthesized
by combining different motion segments and optimizing transition
costs along graph paths [41]. More recent approaches employ RNN
[2, 17, 47], GANs [22, 46], Transformer [24, 25, 43], and CNN [16]
models to map the given music to a joint sequence of the contin-
uous human pose space directly. Such methods would regress to
nonstandard poses that are beyond the dancing subspace during
inference. In contrast, our proposed method does not produce the
phenomenon of limb drift.

3 OUR APPROACH
In this section, we introduce the problem formulation for semantic-
driven human motion generation. To enable adaptive motion gen-
eration for different prompts, we propose the inclusion of a mo-
tion duration prediction network to approximate the duration. To
generate human motions that correspond to continuous long text
descriptions, we establish a connection between an autoregressive
encoder and the diffusion model, incorporating information from
both the previous motion sequence and the text prompt.

3.1 Problem Description
To generate complex motion sequences with long-term text
prompts, we propose to feed multiple text prompts in order. Given
𝑁 text prompts 𝑆1:𝑁 =

{
𝑆1, 𝑆2, . . . , 𝑆𝑁

}
, the model is required to

generate 𝑁 motion segments 𝑋 1:𝑁 =
{
𝑋 1, 𝑋 2, . . . , 𝑋𝑁

}
consistent

with the text descriptions, where 𝑁 denotes the number of motion
segments involved in the entire motion sequence. Each motion
segment is defined as 𝑋 𝑖 =

{
𝑥1, 𝑥2, . . . , 𝑥𝐹

𝑖
}
, where 𝐹 𝑖 is the total

number of frames of the motion segment 𝑋 𝑖 and 𝑥 𝑗 denotes the 3D
human body pose representation of the 𝑗-th frame. It is imperative
that each generated motion segment and the corresponding num-
ber of motion frames adhere to the specifications outlined in the
text prompt. Additionally, a seamless transition from 𝑋 𝑖−1 to 𝑋 𝑖 is
crucial for the generation of high-fidelity motion.

3.2 Motion Duration Prediction Network
Given a semantic prompt 𝑆𝑖 describing a motion, the duration
of each 𝑋 𝑖 may vary. For instance, in the HumanML3D dataset
[11], the prompt "a man kicks something or someone with his
left leg" corresponds to 116 motion frames, while the prompt "a
person squats down then jumps" corresponds to 35 motion frames.
Consequently, we propose predicting the motion duration in order
to generate motions with adaptive length. Following T2M [11]
we use probability density estimation to determine the number of
frames required for the motion synthesis based on text prompts.
Due to the diversity of the duration of motion clips, it is more
reasonable to model the mapping problem of text-to-duration as
a density estimation problem than directly regressing the specific
value. By utilizing the semantic prompt 𝑆𝑖 as input for the motion
duration prediction network, a probability density estimation is
conducted on the discrete group encompassing all possible motion
durations 𝐿 = {𝐿𝑚𝑖𝑛, 𝐿𝑚𝑖𝑛 + 1, . . . , 𝐿𝑚𝑎𝑥 }. The discrete duration
probability density can be formulated as:

𝑝 (𝐿 |𝑆𝑖 ) =
{
𝑝 (𝐿𝑚𝑖𝑛 |𝑆𝑖 ), 𝑝 (𝐿𝑚𝑖𝑛 + 1|𝑆𝑖 ), . . . , 𝑝 (𝐿𝑚𝑎𝑥 |𝑆𝑖 )

}
. (1)
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Therefore, the loss function of the network is designed as the
cross-entropy loss of multi-classification, as depicted in Equation 2:

L𝐶𝐸 = −
𝐿𝑚𝑎𝑥∑︁

𝑑=𝐿𝑚𝑖𝑛

𝑙𝑑 log(𝑝 (𝑑 |𝑆𝑖 )), (2)

where 𝑙 is the one-hot encoding of the ground truth duration, if
and only when the duration is 𝑑 , 𝑙𝑑 is equal to 1, otherwise 0.

3.3 Autoregressive Iteration
It is important to note that daily humanmotions encompass not only
simple, single motions but also complex, prolonged motions that
more accurately reflect real-life scenarios. Specifically, given a series
of semantic prompts 𝑆1:𝑁 , a series of randomly sampled temporal
motion sequences 𝑋 1:𝑁

𝑇
∼ N(0, 𝐼 ) obeying the standard normal

distribution, and amaximumnoise scale𝑇 ∈ Nwhere each semantic
prompt 𝑆𝑖 describes a single and distinct motion. Our goal is to
generate noise-free temporal motion sequences 𝑋 1:𝑁

0 , which are
guided by the semantic prompts, with smooth transitions between
adjacent motions 𝑋 𝑖−1

0 and 𝑋 𝑖
0. The overall process is illustrated in

Figure 1, and each pair of blue and green blocks represents each step
of the AMDmodel. 𝑆1:𝑁 employs the model iteratively to synthesize
motion 𝑋 1:𝑁

0 . The blue block represents the context encoder and
the green block is the motion diffusion module.

3.3.1 Context Encoder. It includes the motion duration prediction
Network 𝐸𝐷 , the semantic conditional encoder 𝐸𝑆 , and the mo-
tion linear layer. The CLIP model [37] is utilized as the semantic
conditional encoder. Given that our primary focus is on long text-
to-motion generation, it is necessary to consider timing-related
information associated with long texts. To this end, we encode the
previous motion 𝑋 𝑖−1

0 by the motion linear layer to obtain 𝑧𝑖−1
𝑚

and encode semantic information 𝑆𝑖−1 by the semantic conditional
encoder 𝐸𝑆 to obtain 𝑧𝑖−1

𝑐 . These are then concatenated to form
the final prior condition feature 𝑧𝑖−1

𝑝𝑎𝑠𝑡 . Simultaneously, the current
semantic information is input into the motion duration prediction
network and semantic conditional encoder to obtain 𝐹 𝑖 and 𝑧𝑖𝑐 ,
respectively. In order to avoid overfitting, we perform a random
mask on the semantic conditional information 𝑧𝑖𝑐 . For the corrupted
motion 𝑋 𝑖

𝑡 , the same motion linear layer is utilized to obtain the
encoded information 𝑧𝑖𝑚 . We feed the diffusion time scale 𝑡 to a
Multi-layer Perceptron (MLP) to obtain the time embedding 𝑧𝑡 . The
final condition information 𝑧 is defined as follows:

𝑧 = 𝐶 (𝐶 (𝐶 (𝑧𝑖−1
𝑚 , 𝑧𝑖−1

𝑐 ) + 𝑅𝑀 (𝑧𝑖𝑐 ), 𝑧𝑡 ), 𝑧𝑖𝑚, 𝑃𝐸 (𝐹 𝑖 )) (3)

In Equation 3 above, C represents the concatenation operation, RM
denotes Random Mask, and PE refers to potion embedding. It is
important to note that during training, we utilize the actual motion
duration present in the dataset, whereas during the inference phase,
the predicted duration information is used.

3.3.2 Motion Diffusion. The network architecture of the motion
diffusion module is depicted in Figure 2. The denoising process (red)
and the diffusion process (yellow) span a total of𝑇 timesteps, where
𝑇 represents the pre-defined maximum time scale. The objective
of the denoising process is to predict the original, cleaned motion
𝑋 𝑖

0, while the diffusion process operates in the opposite direction.

During the denoising process, we commence from the current de-
noising timescale 𝐷𝐸𝑡 and directly predict the coarse raw motion
𝑋 𝑖

0, as shown in Equation 4.

𝑝𝜃 (𝑋 𝑖
0) := 𝑝 (𝑋 𝑖

𝑡 )
𝐷𝐸𝑡∏
𝑡=1

𝑝𝜃 (𝑋 𝑖
𝑡−1 |𝑋

𝑖
𝑡 , 𝑧). (4)

The single step of the denoising process is essentially the transfer
process from 𝑋 𝑖

𝑡 to 𝑋
𝑖
𝑡−1, the transfer strategy requires a network

with parameters 𝜃 to learn the sampling distribution as:

𝑝𝜃 (𝑋 𝑖
𝑡−1 |𝑋

𝑖
𝑡 , 𝑧) := 𝑞(𝑋 𝑖

𝑡−1 |𝑋
𝜃
0 (𝑋

𝑖
𝑡 , 𝑡, 𝑧))

= N(𝑋 𝑖
𝑡 ;
√
𝛼𝑡𝑋

𝜃
0 (𝑋

𝑖
𝑡 , 𝑡, 𝑧), (1 − 𝛼𝑡 )𝐼 ),

(5)

where 𝑋𝜃
0 (𝑋

𝑖
𝑡 , 𝑡, 𝑧) represents the neural network with parameter

𝜃 , which takes in 𝑋 𝑖
𝑡 , 𝑡 , and conditional information 𝑧 as input.

In the diffusion process, we start from the coarse raw motion 𝑋 𝑖
0

predicted by the last denoising process and the current diffusion
timescale 𝐷𝐼𝑡 . 𝑋 𝑖

0 passes through a series of Markov random noises
and finally transfers to a noise motion that approximately obeys
the standard Gaussian normal distribution. The single step of the
diffusion process is essentially the transform from𝑋 𝑖

𝑡−1 to𝑋
𝑖
𝑡 , which

is defined in Equation 6, where the 𝛽𝑡 is pre-defined. The transition
probability formula of the diffusion process from 𝑋 𝑖

0 to 𝑋
𝑖
𝑡 can be

derived from Equation 6, which is defined as shown in Equation 7,
where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =

∏𝑡
𝑠=1 𝛼𝑠 .

𝑞(𝑋 𝑖
𝑡 |𝑋 𝑖

𝑡−1) := N(𝑋 𝑖
𝑡 ;
√︁

1 − 𝛽𝑡𝑋
𝑖
𝑡−1, 𝛽𝑡 𝐼 ), (6)

𝑞(𝑋 𝑖
𝑡 |𝑋 𝑖

0) :=
𝐷𝐼𝑡∏
𝑡=1

𝑞(𝑋 𝑖
𝑡 |𝑋 𝑖

𝑡−1) = N(𝑋 𝑖
𝑡 ;
√
𝛼𝑡𝑋

𝑖
0, (1 − 𝛼𝑡 )𝐼 ). (7)

The relationship of the timestep 𝑡 , denoising timescale 𝐷𝐸𝑡 , and
diffusion timescale 𝐷𝐼𝑡 is 𝑡 + 𝐷𝐸𝑡 = 𝑇 and 𝑡 + 𝐷𝐼𝑡 = 𝑇 − 1, where
𝑡 = [0, 1, ...,𝑇 − 1]. For example, in the timestep 0, the input is
the denoising timescale 𝑇 , the noise motion 𝑋 𝑖

𝑇
, and the current

semantic conditional feature 𝑧, the output is the predicted rough
original motion𝑋 𝑖

0 = (𝑋 𝑖1
0 , 𝑋 𝑖2

0 , ...𝑋 𝑖𝐹 𝑖

0 ), where 𝐹 𝑖 is the frame num-
ber. At the same time, the input of the coupled diffusion process
is diffusion timescale 𝑇 − 1 and 𝑋 𝑖

0, the output is 𝑋
𝑖
𝑇−1. The time

iteration process is shown in Figure 3. The lengths of the red and
yellow blocks represent the size of the denoising timescale and the
diffusion timescale, respectively. It is worth mentioning that the
last iteration only has the denoising process.

3.3.3 Loss Function. Following each timestep, we directly pre-
dict the original motion sequence 𝑋 𝑖

0 and optimize the diffusion
model parameters by measuring the MSE loss between 𝑋 𝑖

0 and
ground truth 𝑋 𝑖

0. However, the motion sequence parameters in-
clude the rotation, position, speed information of the human
body posture, and the static judgment information of the foot
joints. In order to more accurately measure the difference be-
tween the generated motion and the real motion, we designed
the loss function, including Lℎ𝑒𝑖𝑔ℎ𝑡 , L𝑝𝑜𝑠 , L𝑟𝑜𝑡 , L𝑣𝑒𝑙 , and L𝑓 𝑜𝑜𝑡 .
Refer to the sector 4.2, we define the motion of the jth frame as
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Figure 2: Motion Diffusion Module. The red blocks denote the denoising process, while the yellow blocks represent the diffu-
sion process. Within the motion diffusion module, they appear in pairs T times (with the exception of the last one).

Figure 3: Time iteration. The red block and yellow block rep-
resent the denoising process and diffusion process respec-
tively. The left side shows the result of the diffusion process,
and the right side is the result of the denoising process.

𝑥 𝑗 =

{
¤𝑟𝑟𝑜𝑜𝑡
𝑗

, ¤𝑔𝑟𝑜𝑜𝑡
𝑗

, ℎ𝑟𝑜𝑜𝑡
𝑗

, 𝑔𝑙𝑜𝑐
𝑗

, 𝑟 𝑙𝑜𝑐
𝑗

, ¤𝑔𝑙𝑜𝑐
𝑗

, 𝑓𝑗

}
. The loss function of

each part of human motion is defined as:

Lℎ𝑒𝑖𝑔ℎ𝑡 =
1
𝐹

𝐹∑︁
𝑗=1

∥ ℎ̂𝑟𝑜𝑜𝑡𝑗 − ℎ𝑟𝑜𝑜𝑡𝑗 ∥2
2, (8)

L𝑝𝑜𝑠 =
1
𝐹

𝐹∑︁
𝑗=1

∥ 𝑔𝑙𝑜𝑐𝑗 − 𝑔𝑙𝑜𝑐𝑗 ∥2
2, (9)

L𝑟𝑜𝑡 =
1
𝐹

𝐹∑︁
𝑗=1

∥ 𝑟 𝑙𝑜𝑐𝑗 − 𝑟 𝑙𝑜𝑐𝑗 ∥2
2, (10)

L𝑣𝑒𝑙 =
1
𝐹

𝐹∑︁
𝑗=1

(∥ ¤̂𝑟𝑟𝑜𝑜𝑡𝑗 − ¤𝑟𝑟𝑜𝑜𝑡𝑗 ∥2
2 + ∥ ¤̂𝑔𝑟𝑜𝑜𝑡𝑗 − ¤𝑔𝑟𝑜𝑜𝑡𝑗 ∥2

2 + ∥ ¤̂𝑔𝑙𝑜𝑐𝑗 − ¤𝑔𝑙𝑜𝑐𝑗 ∥2
2), (11)

L𝑓 𝑜𝑜𝑡 =
1
𝐹

𝐹∑︁
𝑗=1

∥ 𝑓𝑗 − 𝑓𝑗 ∥2
2 . (12)

Among them, Lℎ𝑒𝑖𝑔ℎ𝑡 represents the height loss, which is used to
measure the mean square error of the y-axis height between the
generated motion and the real motion. The L𝑝𝑜𝑠 represents the
joint position loss, which is used to measure the mean square error

of the three-dimensional joint point position coordinates in the
local coordinate system between the generated motion and the real
motion. TheL𝑟𝑜𝑡 represents the joint rotation loss, which is used to
measure the mean square error of the six-dimensional joint rotation
in the local coordinate system between the generated motion and
the real motion. The L𝑣𝑒𝑙 represnts the joint velocity loss, which is
used to measure the mean square error of the linear velocity and
angular velocity of each joint between the generated motion and
the real motion. The L𝑓 𝑜𝑜𝑡 represents the sliding foot loss, which
is used to measure the mean square error of the static labels of
the foot joints between the generated motion and the real motion.
Finally, the loss function is defined as

L𝑡𝑟𝑎𝑖𝑛 = 𝜆ℎ𝑒𝑖𝑔ℎ𝑡Lℎ𝑒𝑖𝑔ℎ𝑡 + 𝜆𝑝𝑜𝑠L𝑝𝑜𝑠 + 𝜆𝑟𝑜𝑡L𝑟𝑜𝑡 + 𝜆𝑣𝑒𝑙L𝑣𝑒𝑙 + 𝜆𝑓 𝑜𝑜𝑡L𝑓 𝑜𝑜𝑡 , (13)

where 𝜆 denotes the coefficients to balance the loss terms.
With the proposed ADM, we are able to generate motion se-

quences according to ordered semantic prompts in an iterative
manner. Specifically, we commence from the first prompt 𝑆1 and
utilize the autoregressive diffusion model to synthesize the corre-
sponding clean motion sequence 𝑋 1

0 . The remaining high-fidelity
motion sequences 𝑋 2:𝑁

0 can be synthesized using prior condition
information as well as 𝑆2:𝑁 . Ultimately, a coherent motion sequence
of any length can be synthesized.

3.3.4 Classifier Free. The unconditionally guided synthetic net-
work and the conditionally guided synthetic network are trained
simultaneously, and the training sample size of the uncondition-
ally guided synthetic network accounts for 10% of the training set.
When sampling in the inference stage, the result 𝑋𝜃 ′

0 (𝑋𝑡 , 𝑡, 𝑐) of the
denoising network will be linearly interpolated by the results of
𝑋𝜃

0 (𝑋𝑡 , 𝑡) and𝑋𝜃
0 (𝑋𝑡 , 𝑡, 𝑐), and the interpolation calculation method

is shown in equation 14, where the interpolation weight 𝜔 = 2.5

𝑋𝜃 ′
0 (𝑋𝑡 , 𝑡, 𝑐) = (1 − 𝜔)𝑋𝜃

0 (𝑋𝑡 , 𝑡) + 𝜔𝑋𝜃
0 (𝑋𝑡 , 𝑡, 𝑐) (14)
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Method R-Precision(top3)↑ FID↓ MultiModal Dist↓ Diversity→ MultiModality↑
T2M [11] 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083

MotionDiffuse [55] 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

MDM [49] 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

T2M-GPT [54] 0.775±.002 0.141±.005 3.121±.009 9.722±.082 1.831±.048

MLD [52] 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

Ours 0.617±.014 0.586±.107 5.469±.063 9.769±.096 2.512±.232

GT 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
Table 1: Single motion synthesis evaluation onHumanML3DDataset. All methods use the real motion length from the ground
truth except ours and T2M-GPT. → means results are better if the metric is closer to the real distribution. We run all the
evaluation 20 times (except MultiModality runs 5 times) and ± indicates the 95% confidence interval.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
HumanML3D[11] The dataset involves the textual re-
annotation of motion capture data from the AMASS [28] and Hu-
manAct12 [12], comprising 14,616 motions annotated with 44,970
textual descriptions.
HumanLong3D We collected motion data using motion capture
equipment and online sources, and annotated eachmotion sequence
with various semantic labels to create the HumanLong3D dataset.
The data format of theHumanLong3D dataset is consistentwith that
of HumanML3D, and it additionally includes coherence information
for motion sequences to support temporal motion generation tasks.
Further details about the HumanLong3D dataset can be found in
the Supplementary Material.
HumanMuisic We collected dance videos from online sources
and extracted the pose parameters of the dancers in the videos,
converting the motion data into the HumanML3D format. For the
music data, we used the public audio toolbox Librosa [19] to ex-
tract music features, including mel frequency cepstral coefficients
(MFCC), MFCC delta, constant-Q chromagram, tempogram, and
onset strength, resulting in a total of 438 dimensions. In total, we
obtained 137,136 paired dance and music data samples, with each
dance sample consisting of 200 frames. Further details about the
HumanMusic dataset can be found in the Supplementary Material.
AIST++ [25] This dataset comprises 992 high-quality 3D pose
sequences in SMPL format [26], captured at 60 FPS, with 952 se-
quences designated for training and 40 for evaluation. We followed
the approach of Bailando [43] to partition the AIST++ dataset.

Dataset Motion Textual descriptions Duration

KIT-ML 3911 6248 10.33h
HumanML3D 14616 44970 28.59h
HumanLong3D 43696 158179 85.87h

Table 2: Dataset description

Evaluation Metrics For text-to-motion evaluation, we employ
metrics consistent with existing methods [49, 55]. Specifically, (a)
Frechet Inception Distance (FID) is used as the primary metric to

evaluate the feature distributions between generated and real mo-
tions in feature space [11], and (b) R-Precision (top 3) calculates
the top 3 matching accuracy between text and motion in feature
space.(c) MultiModal Dist calculates the distance between motions
and texts. (d) Diversity measures variance through features. (e)Mul-
tiModality assesses the diversity of generated motions for the same
text. For music-to-dance evaluation, we employ metrics consistent
with existing methods [17, 43]. Refer to Supplementary, Chapter 4
for more evaluation metric details.

4.2 Experimental Settings
Motion Representation Our motion representation adopts the
same format as HumanML3D [11], i.e., 𝑋 ∈ R263×𝐹 . Each frame
of motion is 263-dimensional data, including the position, linear
velocity, angular velocity, joint space rotation of three-dimensional
human joints, and label information for judging whether the foot
joints are still. The motion of a single frame is represented as
𝑥 =

{
¤𝑟𝑟𝑜𝑜𝑡 , ¤𝑔𝑟𝑜𝑜𝑡 , ℎ𝑟𝑜𝑜𝑡 , 𝑔𝑙𝑜𝑐 , 𝑟 𝑙𝑜𝑐 , ¤𝑔𝑙𝑜𝑐 , 𝑓

}
. Since images are often

represented as 𝐼 ∈ R𝑊 ×𝐻×𝐶 , in order to naturally transfer mo-
tions to image-based diffusion models, we upscale 𝑋 ∈ R263×𝐹 to
𝑋 ∈ R263×𝐹×1. Refer to Supplementary, Chapter 3 for more details.
Motion Duration Prediction Network 𝐿𝑚𝑖𝑛 is set to 10 and
𝐿𝑚𝑎𝑥 is 50, each unit increment corresponds to 4 motion frames, i.e.,
0.2s motion duration, so the duration prediction range covers the
lower bound of 2s and the upper bound of 9.8s of the data samples.
The motion duration prediction network and the diffusion model
are trained independently, with the motion duration prediction
network being used only during inference.
Motion Diffusion We set the maximum noise scale𝑇 to be 1000,
the coefficient 𝛽1:𝑇 is set to a linear increment from 10−4 to 0.02,
latent vector dimensions are 512, the number of layers of the motion
encoder is 6, and the number of heads of the multi-head attention
mechanism is set to 6, the learning rate is fixed at 10−4, the number
of training steps is 200000, and we use AdamW optimizer.
Other Settings The output dimension of the motion linear layer
and the latent vector dimension of the motion diffusion module
are both 512. The semantic conditional encoder adopts the CLIP-
ViT-B/32 model. During inference, the semantic prompt 𝑆𝑖 is input
into the motion duration prediction network 𝐸𝐷 to obtain the esti-
mated value 𝐹 𝑖 of the motion sequence duration, which is used to
determine the timing dimension for motion sequence sampling.
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(a) the person picks an object up off the floor with their left hand

(b) a person throws an object with his right hand.

Figure 4: Visualization onHumanML3DDataset. The darker
colors indicate the later in time.

(a) the motion he is doing is called Mulan boxing fifth road.

(b) it is an motion named support the ground with bending knees.

Figure 5: Visualization on HumanLong3D Dataset

Comparisons on Single Motion We compared single motion
generationwith existing state-of-the-art methods. For singlemotion
generation, our conditional information includes the estimated
motion duration value and semantic information but excludes prior
motion and semantic information. The visualization results are
shown in Figure 4 and Figure 5. It can be seen that AMD is capable
of generating corresponding motion in response to text prompts
containing a single motion while achieving smooth transitions.
As can be seen from Table 1 and Table 3, AMD achieves SOTA
performance on single motion generation and can infer the motion
duration, which is beneficial for actual choreographing motions.

Since the motion duration prediction network is trained indepen-
dently and used only during inference, we evaluate its performance
separately. We perform four-fold cross-validation on the KIT-ML,
HumanML3D, and HumanLong3D datasets, using brier-score and
cross-entropy loss as density estimation evaluation metrics. Refer
to Supplementary, Chapter 2 for details.

Figure 6: VisualizationResults. The top figure represents the
musical beat. The bottom figure illustrates the motion gen-
erated by our model.

Comparisons on Music Dance We conducted a comparison
between our method and the state-of-the-art (SOTA) approach us-
ing the AIST dataset and HumanMusic dataset. Our dataset division
methodology was identical to that of the SOTA methods [43], and
we converted the data in AIST++ into HumanML3D format. As
illustrated in Figure 6, the movements generated by AMD were in
sync with the beat of the music. The results of this comparison are
presented in Table 4. Our method achieved performance on par
with the SOTA approach, with particularly notable improvements
in terms of diversity. Further details about the evaluation of the
music-dance task can be found in the Supplementary Material.

4.3 Comparisons on Compound Motion

Motion Quality Motion Diversity

Method FID𝑘 ↓ FID†
𝑔 ↓ Div𝑘 ↑ Div†𝑔 ↑ BAS ↑

DanceNet [56] 69.18 25.59 2.86 2.85 0.1430
DanceRevolution [17] 73.42 25.92 3.52 4.87 0.1950

FACT [25] 35.35 22.11 5.94 6.18 0.2209
Bailando [43] 28.16 9.62 7.83 6.34 0.2332

Ours 32.21 18.72 21.24 16.53 0.2158

Table 4: Music-Dance evaluation on AIST++ Dataset

We compare compound motion generation with SOTA methods
[49, 52, 54, 55]. Since the HumanML3D dataset does not contain
motion coherence information, we conducted this experiment only
on the HumanLong3D dataset, and we divided the dataset into
training, test, and validation sets using a ratio of 0.85:0.10:0.05. Ad-
ditionally, we designed three benchmarks based on TEACH [4]: 1)
Joint prediction (ours-J): The long semantic prompt 𝑆𝑖−1:𝑖 formed
by the combination of two coherent prompts are used as the input
of the diffusion model, and a coherent time-series motion sequence
𝑋 𝑖−1:𝑖

0 is obtained by direct joint prediction. 2) Linear interpolation
(ours-I): This method interpolates the results of two independent
motion synthesis. 3) Motion filling (ours-F): Similar to linear inter-
polation, two independent motion synthesis are required to obtain
𝑋 𝑖−1

0 and 𝑋 𝑖
0, and the time window is set to 10% of the motion se-

quence duration. All frame data except for the time window are
fixed, and the frame data within the time window are filled with
random normal distribution noise. The coherent motion sequence
is then restored through the denoising process.
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Method R-Precision(top3)↑ FID↓ MultiModal Dist↓ Diversity→ MultiModality↑
T2M [11] 0.197±.007 1.352±.033 5.777±.021 5.584±.073 2.742±.315

MotionDiffuse [55] 0.191±.007 1.171±.049 5.801±.016 5.221±.091 3.123±.098

MDM [49] 0.152±.004 0.721±.024 8.058±.021 5.035±.084 2.727±.027

T2M-GPT [54] 0.189±.003 0.350±.018 5.613±.016 5.046±.061 2.735±.057

MLD [52] 0.173±.003 0.857±.023 5.815±.012 4.815±.052 3.052±.080

Ours 0.150±.004 0.745±.027 8.062±.019 5.047±.075 2.835±.257

GT 0.208±.003 0.006±.000 5.294±.007 4.977±.048 -
Table 3: Single motion synthesis evaluation on HumanLong3D Dataset.

Ground
Truth

Ours

Ours-J

Ours-I

Ours-F

MDM

Motion
Diffuse

MLD

T2M-
GPT

Figure 7: Result for compound motion synthesis (blue: "there is a man doing left smash right cover." yellow: “the motion he
is doing is called step forward and turn around”). The part delineated by the red line indicates a discrepancy between the
generated motion and the ground truth.

As shown in Table 5, Among the five evaluation metrics, AMD
achieved top 3 performance in three of them, with its FID and
Diversity scores ranking first. Notably, AMD outperformed other
methods by a significant margin in the FID metric, which measures
the similarity of generated motions. As illustrated in Figure 7, com-
pared to the ground truth, AMD keeps with the highest degree
of similarity, while MDM, MotionDiffuse, and MLD all exhibited
varying degrees of limb stiffness. Although T2M-GPT achieves re-
sults comparable to the ground truth in the first half of motion

generation, its performance deteriorates in longer text-to-motion
generation tasks. This is due to its premature prediction of the
terminator, resulting in a lack of corresponding motion sequence
for the second half of the text.

5 CONCLUSION
In this paper, we present the HumanLong3D - the first dataset that
pairs complex motions with long textual descriptions to address the
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Method R-Precision(Top3)↑ FID↓ MultiModal Dist↓ Diversity→ MultiModality↑
Ours-J 0.122±.005 12.813±.085 9.898±.032 4.610±.104 3.527±.264

Ours-I 0.141±.004 0.739±.030 7.978±.043 4.364±.084 2.281±.223

Ours-F 0.138±.008 0.589±.029 7.872±.021 4.337±.076 2.248±.229

MDM [49] 0.096±.005 27.348±.349 7.203±.039 0.781±.040 0.547±.037

MotionDiffuse [55] 0.157±.004 6.860±.113 6.783±.028 4.529±.076 2.409±.204

T2M-GPT [54] 0.166±.003 1.249±.026 5.903±.017 4.895±.047 3.093±.104

MLD [52] 0.144±.002 3.843±.058 6.540±.011 4.365±.033 2.831±.072

Ours 0.154±.005 0.215±.017 7.719±.039 4.515±.135 1.242±.118

GT 0.160±.003 0.001±.000 7.309±.017 4.452±.069 -
Table 5: Compound motion generation evaluation on HumanLong3D Dataset. For each metric, we repeat the evaluation 20
times (except MultiModality runs 5 times). Red, Blue, and Green indicate the first, the second, and the third best result.

scarcity of such data. Given the suboptimal performance of current
motion generation methods on long text descriptions, we introduce
a novel network architecture AMD, which combines autoregres-
sive and diffusion models to effectively capture the information
contained in long texts. Furthermore, we extend our approach to
incorporate audio conditional input and construct a large-scale
music-dance dataset - HumanMusic.
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