
Cref: An LLM-based Conversational Software Repair Framework
for Programming Tutors

Boyang Yang∗†
School of Information Science and
Engineering, Yanshan University

China
yangboyang@jisuanke.com

Haoye Tian∗
CIS, University of Melbourne

Australia
haoye.tian@unimelb.edu.au

Weiguo Pian
SnT, University of Luxembourg

Luxembourg
weiguo.pian@uni.lu

Haoran Yu
Jisuan Institute of Technology, Beijing
JudaoYouda Network Technology Co.

Ltd.
China

yuhaoran@jisuanke.com

Haitao Wang
Jisuan Institute of Technology, Beijing
JudaoYouda Network Technology Co.

Ltd.
China

wanghaitao@jisuanke.com

Jacques Klein
SnT, University of Luxembourg

Luxembourg
jacques.klein@uni.lu

Tegawendé F. Bissyandé
SnT, University of Luxembourg

Luxembourg
tegawende.bissyande@uni.lu

Shunfu Jin‡
School of Information Science and
Engineering, Yanshan University

China
jsf@ysu.edu.cn

ABSTRACT

Program repair techniques offer cost-saving benefits for debug-
ging within software development and programming education
scenarios. With the proven effectiveness of Large LanguageModels
(LLMs) in code-related tasks, researchers have explored their po-
tential for program repair. However, it is crucial to recognize that
existing repair benchmarks may have influenced LLM training data,
potentially causing data leakage. To evaluate LLMs’ realistic repair
capabilities, ❶ we introduce an extensive, non-crawled benchmark,
referred to as TutorCode, comprising 1,239 C++ defect codes and
associated information such as tutor guidance, solution description,
failing test cases, and the corrected code. Our work assesses the
repair performance of 12 LLMs on TutorCode, measuring repair
correctness (TOP-5 and AVG-5) and patch precision (RPSR). ❷ We
then provide a comprehensive investigation into which types of
extra information can help LLMs improve their performance in re-
pairing defects. Among these types, tutor guidance was found to be
the most effective information in enhancing LLM repair capabilities.
To fully harness LLMs’ conversational capabilities and the benefits
of augmented information, ❸ we introduce a novel conversational
semi-automatic repair framework Cref assisting human program-
ming tutor. It demonstrates a remarkable AVG-5 improvement of
17.2%-24.6% compared to the baseline, achieving an impressive
AVG-5 of 76.6% when utilizing GPT-4. These results highlight the

∗Co-first authors who contributed equally to this work.
†Also affiliated with Jisuan Institute of Technology, Beijing JudaoYouda Network
Technology Co. Ltd.
‡Corresponding author.

Conference’17, July 2017, Washington, DC, USA

2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

potential for enhancing LLMs’ repair capabilities through interac-
tions with tutors and historical conversations involving incorrect
responses. The successful application of Cref in a real-world edu-
cational setting demonstrates its effectiveness in reducing tutors’
workload and improving students’ learning experience, while also
showcasing its promise for facilitating other software engineering
tasks, such as code review.

1 INTRODUCTION

In the code-related scenarios, such as programming education, pro-
viding efficient and precise automated feedback, especially auto-
generated program repairs, is essential for effectively guiding a
large number of students and reducing the workload of human
tutors [1, 28, 82]. Data from a company’s online programming
education platform show that 54.5% of students need debugging
assistance while completing programming tasks. Each tutor spends
an average of 26.7 minutes resolving a single issue, which leads
to high labor costs for the company. Additionally, this extensive
resolution time adversely affects students’ completion times and
overall learning experience. Program repair techniques, vital in both
programming education and software development, significantly re-
duce the manual labor involved in debugging [16, 21, 31, 32, 63, 65].
Nowadays, machine learning-based approaches have gained promi-
nence in the field of program repair research. These techniques pre-
dominantly rely on Neural Machine Translation (NMT) to correct
code [25, 38, 45, 50, 52, 55, 79]. Most recently, Jiang et al. [25] intro-
duced KNOD, an NMT-based program repair method that employs
a three-stage tree decoder to capture code structure and perform
domain knowledge distillation; Parasaram et al. [50] proposed Rete,
a learning-based program repair method that learns namespace
representations to navigate the search space of patches, thereby
enhancing program repair; Meng et al. [43] introduced TENURE,

ar
X

iv
:2

40
6.

13
97

2v
1

 [
cs

.S
E

]
 2

0
Ju

n
20

24

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Yang and Tian et al

an innovative template-based neural program repair approach that
combines template-based and NMT-based methods, demonstrating
superior performance compared to other machine learning-based
approaches when evaluated on the Defects4J dataset.

Code-targeted pre-trained LLMs, such as CodeGen [46], Incoder
[14], and StarCoder [36], have made significant strides in advancing
the field of machine learning-based program repair. These LLMs
have been instrumental in generative program repair through vari-
ous paradigms. This includes zero-shot approaches, which utilize
the original incorrect code either with [13, 30, 54] or without ac-
companying instructions [15], and few-shot approaches that incor-
porate a small set of patch examples [51]. With the expansion of
training datasets to include large-scale code-related data crawled
from the internet [9, 48, 66], there has been a noticeable enhance-
ment in LLMs’ program repair capabilities [36]. However, the in-
herent stochastic and opaque nature of LLMs makes the generated
patches unreliable [5]. Yet, many of the current LLM-based repair
techniques typically treat the repair task as an automated procedure,
often overlooking the collaborative and interactive aspects inherent
in programming [83]. To harness the conversational capabilities of
LLMs and address the unpredictability of generated code, there is a
growing need for engaging in interactive program repair [18, 76].
For instance, Gao et al. [17] introduced interactive program repair
where developers are involved in reviewing and selecting automat-
ically generated patches. Building on the success of recent LLM-
as-a-service deployments, Sobania et al. [60] enhanced the repair
performance of ChatGPT by incorporating human-authored hints.
They have validated their approach on QuixBugs, based on a corpus
of 40 bugs. From a different perspective, Xia et al. [76] proposed
ChatRepair, where when an LLM-generated patch fails to pass a test
case, a new prompt is constructed by combining the invalid patch
with the failing test case information, towards generating the next
prompt. This process is executed in at most three turns of dialogs,
and has been validated on 337 bugs from QuixBugs and Defects4J.
Considering the importance of utilizing ChatGPT judiciously and
with expertise, Azaria et al. [5] proposed an LLM-based repair strat-
egy designed for experts who are well-versed in the respective
domains. Unfortunately, they did not perform any performance
evaluation.

Overall, however, interactive program repair using LLMs still
faces several limitations:

① Data Leakage Concerns: The effectiveness of LLMs in interac-
tive program repair often relies on the scale of code-related data
collected from the internet, which can be associated with data

leakage issues. Indeed, the benchmarks used for evaluation may
have been part of the training data for these LLMs [2, 37, 64, 74].
For example, Tian et al. [64] discovered that ChatGPT’s correct-
ness on 2022 LeetCode questions was significantly lower than in
previous years, where the questions were available online when
ChatGPT data was being collected (i.e., before September 2021).
This finding suggests that, to ensure more accurate assessment
of LLMs, careful benchmark selection is essential to reduce data
leakage risks.

② High Computational Overhead: Current interactive repair meth-
ods can be computationally intensive. For instance, Xia et al. [76]’s
ChatRepair requires an average of 10 independent dialog sessions

to repair an incorrect code [15]. This high computational cost
can limit the practicality of these approaches.

③ Limited Evaluation on Large-Scale Datasets: To the best of our
knowledge, existing interactive repair methods have not been
evaluated on large-scale datasets. This includes recent research
by Xia et al. [76], Azaria et al. [5], and Sobania et al. [60]. Assess-
ing the performance of these state-of-the-art methods on larger
datasets would provide a more comprehensive understanding of
their capabilities and limitations.

④ Need for Augmented Information: Existing LLM-based interac-
tive program repair methods primarily rely on problem descrip-
tions and failing test cases to generate patches [75, 76]. However,
this reliance might not give LLMs enough information to un-
derstand the programs and identify the necessary fixes. Prior
research [5, 8, 73] indicated that incorporating human interac-
tion into the repair process can significantly improve the quality
and accuracy of generated patches. Furthermore, leveraging di-
verse augmented information, such as solution descriptions, can
deepen LLMs’ understanding of programs [8, 21, 44, 77]. Conse-
quently, it is necessary to investigate approaches to integrating
augmented information with human expertise, specifically in-

teraction with tutors or developers, into the repair process,
further enhancing LLMs’ repair capabilities.

This paper. In this study, we address the challenge of data leakage
and evaluate the practical benefits of different forms of augmented
information within conversation-based program repair methods. To
do this, we introduce an extensive benchmark dataset, which we re-
fer to as “uncrawled” to emphasize that it has not been incorporated
into the training data of any pre-trained LLM. This benchmark orig-
inates from a company specializing in training novice developers
to become experienced professionals through data structure and
algorithm courses.

Our dataset, TutorCode, comprises 1,239 incorrect C++ code
samples contributed by 427 students, covering 35 distinct program-
ming challenges distributed across 12 difficulty levels. It also in-
cludes tutor guidance provided by human tutors as well as cor-
responding corrected code. The 35 challenges were designed to
cultivate various cognitive skills, including abstract reasoning, pro-
cedural thinking, and conceptual understanding. Sourced from the
real-world experience of repair processes, we expect this bench-
mark to serve as a valuable and reliable asset1 for evaluating a
range of coding-related tasks, such as program synthesis, fault
localization, and program repair. Using TutorCode, we explore
the realistic repair capabilities of LLMs and investigate LLMs as
conversational repair tools for tutors in programming education
scenarios. First, we investigate the practical program repair capa-
bilities of 12 prominent LLMs. Our analysis reveals that GPT-4
and GPT-3.5 consistently outperform other LLMs in program re-
pair tasks. Second, we explore the influence of different types of
augmented information in prompts on LLM-based program repair
performance. Our findings demonstrate that providing LLMs with
tutor guidance significantly enhances their performance, and this
can be further improved by incorporating solution descriptions

1TutorCode will be made available due to our commitment to open science. However,
to prevent web crawlers from retrieving it (with the risk of it being leaked into training
data of LLMs), we restrict its access via an API requiring authorization tokens.

Cref: An LLM-based Conversational Software Repair Framework for Programming Tutors Conference’17, July 2017, Washington, DC, USA

and failing test cases. Finally, to leverage the conversational abil-
ities of LLMs and capitalize on the aforementioned three types
of augmented information, we introduce a novel semi-automatic
LLM-based Conversational program REpair Framework (Cref) for
tutors, prompting LLMs with tutor guidance, solution description,
and failing test cases, interactively. Leveraging LLM conversational
capabilities, Cref achieves an AVG-5 score of 76.6% when utilizing
GPT-4, showcasing remarkable program repair capabilities with
only 7.5% of input tokens (i.e., expense cost) per request compared
to ChatRepair. In practical application within a company, Cref
acts as a semi-automatic repair tool that aids tutors by utilizing
LLMs to repair incorrect codes based on preliminary feedback, thus
reducing debugging times by 71.2% and decreasing costs by 69.9%.
Cref enhances the tutoring effectiveness and improves the learn-
ing experience by providing more timely and accurate debugging
assistance.
Contributions. The main contributions of our work are as follows:
• We introduce a large-scale uncrawled benchmark TutorCode for
realistic evaluation of LLM-based repair approaches. TutorCode
includes 1,239 defective C++ programs, to which human tutor
guidance, programming problem description, solution descrip-
tion, test cases, and ground truth corrected codes are attached.

• We assess the realistic repair capabilities of state of the art 8 open-
source [14, 46, 57, 58, 67, 84] and 4 closed-source [4, 48, 49, 53]
LLMs on the TutorCode.

• We evaluate the enhancements of different augmented informa-
tion on the repair capabilities of LLMs, measuring repair correct-
ness (AVG-5) and patch precision (RPSR).

• We introduce a conversational semi-automatic repair framework,
termed Cref, to leverage the conversational capabilities of any
LLMs and different augmented information for repair tasks. The
effectiveness of Cref is validated using TutorCode.

• We deploy Cref as an assisting tool for programming tutors

in a company, achieving a 71.2% response time reduction and a
69.9% cost decrease for students’ debugging requests.
The structure of this paper is organized as follows: Section 2

offers a review of background and related works. In Section 3, we
design the methodology employed in this study. Section 4 provides
a detailed account of the experimental findings, while Section 5
investigates the outlier data and demonstrates the industrial appli-
cation. Potential threats to the validity are qualified in Section 6.
Section 7 summarizes this paper’s key points and findings.

2 BACKGROUND & RELATEDWORK

2.1 Large Pre-Trained Language Model

Encoder-Decoder Models

Encoder-decoder architectures, such as BART [34] and T5 [56],
employ an encoder to transform an input sequence into a contin-
uous representation, capturing essential information. A decoder
then generates the output sequence based on this representation.
CodeT5p [70], an advancement of CodeT5 [71], is developed by
Salesforce and is pre-trained on a wide array of tasks, incorporating
both unimodal code data and bimodal code-text data.
Decoder-Only Models

Decoder-only architectures, such as GPT-3 [9] and CodeGen [46],
utilize the transformer’s decoder in an autoregressive manner to

sequentially generate tokens based on preceding tokens. This ap-
proach is the most prevalent transformer architecture at present.

The Generative Pre-trained T (GPT) model by OpenAI features
a unidirectional, causal attention mechanism. This design ensures
that each sequence position attends only to preceding positions,
thereby maintaining the input sequence order. During pre-training,
the model maximizes the likelihood of word predicting based on
its preceding context, as denoted by the following formula:

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =
∑︁
𝑡

log 𝑃 (𝑤𝑡 |𝑤1:𝑡−1;𝜃)

Both Codex [11] and InstructGPT (GPT-3.5) [49] are deriva-
tives of the GPT-3 model. Additionally, ChatGPT [47] served as a
dialog-optimized adaptation of GPT, developed through Reinforce-
ment Learning from Human Feedback (RLHF) and drawing from
the frameworks of both Codex and InstructGPT. The successor to
GPT-3.5, known as GPT-4 [48], boasts enhanced performance and
an extended context window. GPT-3.5 and GPT-4 are proficient in
code generation and debugging, guided by natural language conver-
sational contexts [64]. Claude-instant [4], based on Anthropic’s
Constitutional AI [7], is a next-generation AI assisting trained on
an extensive corpus of text and code thus capable of code-related
tasks [19]. Bard [53], Google’s experimental conversational AI,
based on LaMDA [62]. It is pre-trained on a 1.56 TB dataset, com-
prising public dialog data and web documents, which includes 12.5%
of code-related documents. StarChat [67], released by Hugging-
FaceH4, is a derivative of BigCode’s StarCoder. It is pre-trained
as a Transformer decoder-only model named StarCoderBase and
is subsequently fine-tuned for Python coding tasks. Salesforce’s
CodeGen [46] employs a multi-step paradigm for program synthe-
sis that outperforms single-turn methods. Incoder [14], developed
by Meta, uses a causal-masked objective for training and special-
izes in code insertion and code generation. Replit-code [57], a
2.7B Causal Language Model, focuses on code completion and em-
ploys Flash Attention and AliBi positional embeddings for efficient
training and inference. LMSYS’sVicuna [84] is a chat assistant fine-
tuned from Llama [66] utilizing shared conversational data. Lastly,
CodeLlama [58] represents a leading family of LLMs tailored for
coding tasks, with multiple versions including foundational models,
Python specializations, and instruction-following models. Given
the numerous LLMs that can repair code, we list 12 prominent LLMs
in Section 3.5 for subsequent experimental purposes.

2.2 Interactive Program Repair

In the context of program repair, “patch” denotes the difference
between the original and corrected code. Test cases are employed to
verify the integrity of patches produced by repair tools. The “patch
size” represents the magnitude of modifications in the altered code.
Variousmetrics can quantify this size, including line differences [69],
alterations in the Abstract Syntax Tree (AST) [22, 23], and other
measures, each offering a unique perspective on the complexity of
the modifications.

Given the LLM’s inherent unpredictability and opacity in cod-
ing tasks, engaging human interactions in a dialogic collabora-
tion becomes imperative for obtaining dependable results [5, 18].

Conference’17, July 2017, Washington, DC, USA Yang and Tian et al

Gao et al. [17] introduced an interactive repair methodology, en-
abling developers to review and select patches generated by auto-
mated techniques. The approach translated the patch into interrog-
ative frameworks, simplifying the process for developers who can
then make informed selections without delving into the intricate
semantics of the patch. Sobania et al. [60] explored the utility of
dialog-based interactions in ChatGPT. Empirical studies conducted
on the QuixBugs [39] demonstrated the efficacy of dialogic hints in
enhancing the program repair capabilities. Xia et al. [76] proposed
ChatRepair, a paradigm that prompts ChatGPT with generated
incorrect patches and failing test cases. In their approach, each
repair case consisted of approximately 10 distinct conversation ses-
sions, with each conversation limited to a maximum of three turns.
Experiments on 10 LLMs showed improvements, validating the
effectiveness of providing validation feedback in a conversational
manner for program repair. In our work, we investigate the poten-
tial of the interactive capabilities of LLMs to enhance LLM-based
program repair.

2.3 Intelligent Tutoring System for

Programming

In education scenarios, Intelligent Tutoring System (ITS) for pro-
gramming shows promising results in helping novice students
learn programming [1, 13, 22, 23, 81]. Gulwani et al. proposed
Clara [22], a fully automated program repair algorithm for intro-
ductory C/Python programming assignments, using the existing
correct student solutions to repair the incorrect attempts through
clustering. Yang et al. proposed Refactoring [23], a fully automated
approach for generating student Python program repairs in real-
time, using re-factoring rules to generate a correct solution with
the same control flow as the incorrect program. ITSP [80] gener-
ates partial repairs that serve as hints to guide students toward the
reference solution, achieving a 57% repair rate on a dataset of 661
incorrect C programs collected from an introductory programming
course. Verifix [1] is an automated program repair technique for
introductory C programming assignments that generates repairs
by aligning a student’s incorrect program with a reference solution
using control flow. MMAPR [81] was proposed to use Codex [11]
with few-shot prompting to build an APR system for introductory
Python programming assignments. The evaluation results on 286
real student programs show that MMAPR can fix more programs
and produce smaller patches than Refactoring. Yasunaga et al. pro-
posed DrReapir [78], a graph-based program repair technique that
learns to repair bugs in programming assignments by leveraging
diagnostic feedback from a compiler, employs a self-supervised
learning paradigm that generates extra training data by corrupting
unlabeled programs and obtains diagnostic feedback. Fan et al.’s
study revealed that given bug location information provided by
a statistical fault localization approach, Codex with edit mode is
similar to or better than existing Java state-of-the-art repair tools
in fixing incorrect codes [13].

Due to the unavailability of the closed-source Codex used by
Fan et al.’s approach as well as MMAPR, and the lack of C++ lan-
guage support in Clara, ITSP, Verifix, and Refactoring, this paper
focuses on evaluating the repair capabilities of DrRepair.

3 STUDY DESIGN

3.1 Research Questions

• RQ-1: How effective are state-of-the-art LLMs in repairing
incorrect code? We evaluate the realistic performance of 12
prominent LLMs in repairing code based on TutorCode (an
uncrawled dataset that enables fair and unbiased evaluation of
LLMs for code repair). We assess both the correctness as well as
the precision of the generated patches. A baseline for evaluation
is established using input data consisting of incorrect code and
associated programming problem description. Furthermore, this
study delves into the influence of code length and difficulty of
programming tasks on the repair capabilities of LLMs.

• RQ-2: Can augmented information assist in strengthening
the repair capabilities of LLMs? This study employs three types
of augmented information to enhance the repair capabilities of
LLMs: solution description as general hints, tutor guidance as
specific guidance, and failing test cases to provide automated
testing feedback. The study provides a thorough analysis of the
impact of various combinations of augmented information on
the repair capabilities of LLMs.

• RQ-3: To what extent can conversation-based repair further
exploit the repair capabilities of LLMs? Utilizing the conversa-
tional strengths of LLMs and incorporating human interactions,
this study introduces Cref, a semi-automatic conversational
repair framework. A large-scale automated experiment is con-
ducted using the TutorCode to evaluate its effectiveness. Cref
incorporates three types of augmented information to unlock the
potential repair capabilities of LLMs through multiple rounds
of dialogues. The study validates the efficacy of conversation-
based repair methods by comparing the performance disparities
when historical dialogue entries are included or excluded in each
conversation turn.

3.2 Benchmark Selection Criteria

In this paper, C++ is selected as the repair benchmark’s program-
ming language. Given its widespread application in high perfor-
mance and interfaces, including game development, large-scale
data platforms, and operating systems [24, 61]. Furthermore, C++
is a multi-paradigms programming language, posing additional
complexities for program repair tools [61].

3.3 Dataset

LLMs like ChatGPT often incorporate code from various sources,
including GitHub, into their training datasets [9, 48, 58]. Most C++
repair benchmarks, such as IntroClass [20] and ITSP [80], are hosted
on GitHub. Additionally, benchmarks like Bugs-C++ [3] and Many-
Bugs [20] compile various historically popular open-source projects
fromGitHub. Qingyuan et al. highlighted that frequently incorporat-
ing GitHub-hosted program repair benchmarks into conventional
training datasets leads to data leakage and subsequent inaccura-
cies in performance evaluation [35]. This suggests a widespread
potential for data leakage across existing C++ repair benchmarks.
To mitigate the risk of data leakage during our experimental analy-
sis, we introduce a large-scale uncrawled C++ repair benchmark,
denoted as TutorCode. TutorCode originates from proprietary,

Cref: An LLM-based Conversational Software Repair Framework for Programming Tutors Conference’17, July 2017, Washington, DC, USA

1 # Artificial Intelligence
2
3 In order to make users believe they are talking to an𝐴𝐼 instead of a real person, it is not an easy

task to take on this position. Mr. Garlic is one of the best in this role, and his performance is
outstanding.

4 The company's top management praised Mr. Garlic's abilities and organized a learning activity for
him to share his work experience. However, when everyone came to Mr. Garlic's workstation, they
found no one in the chair, and only saw a program running on the computer:

5 Accept user input, then:
6 1. Change all capital English letters in the original text to lowercase, except for `I`;
7 2. Replace all standalone `can you` and `could you` in the original text with `I can` and `I

could`, respectively;
8 3. Replace all standalone `I` and `me` in the original text with `you`;
9 4. Convert `?` to `!`;
10 Finally, output the result as the reply to the user. Can you understand this program?
11 ### Input Format
12 The first line contains an integer𝑛, indicating that there will be𝑛 operations. The next𝑛 lines

contain a string representing user input (𝑙𝑒𝑛 ≤ 100, no more than 100 lines).
13 ### Output Format
14 For each user input, output a corresponding line of string, representing the AI's output content.
15 ### Time Limit
16 1000ms
17 ### Memory Limit
18 65536KB

(a) Programming problem description

1 Since line 30 has judged f[i+1], it should let i++ and skip f[i+1].
2 Also, note that there are multiple sets of data, and you need to output for each input. Remember to clear the f

array.

(b) Tutor guidance

1 Use `getline()` to read each line of the string, and use the `isalnum` function to determine whether it is a
number or a letter. If it is a number or a letter, a non−0 value is returned. If it is, check if it is an `I`, as we
need to convert it to lowercase. If it is not a number or a character, insert a space (the reference code for
handling spaces uses `stringstream`, but other methods can also be used). After processing the spaces, split
the words in the sentence for judgment. Pay attention to the spaces before and after the words and the ultimate
string operation. Pay attention to the details, and remember to output the original sentence first!

(c) Solution description

1 [INPUT] 5
2 Can YoU aNswer me ?
3
4 [OUTPUT] I can answer you !
5

(d) Failing test cases

Figure 1: Examples of programming problem description and three types of augmented information.

internal data collated by a company, specifically from data struc-
ture and algorithm courses aimed at training novice developers to
experts. TutorCode is publicly available through API to mitigate
the risk of unauthorized crawling into the training corpus of LLMs.
Under the usage license, API users are strictly limited to uploading
TutorCode to the public network. TutorCode comprises 1,239
incorrect codes written by 427 students and covers 35 programming
problems, adapted from real-world development context to single-
task problems assessed using standardized input-output test cases.
Each incorrect code is accompanied by problem description (Fig-
ure 1a), tutor guidance (Figure 1b), solution description (Figure 1c),
and failing test cases (Figure 1d). The public benchmark Tutor-
Codewill be continuously updated with new problems and buggy
codes in the future, and will serve as a fundamental resource for
future code-related research.

Table 1: 12 Tiers of TutorCode.

Tiers Range Summary Key Objectives

T1, T2, T3 Introduction to C++ Grammar Abstract Thinking,
Program Thinking

T4, T5, T6 Introduction to Data Structures Object Thinking,
and Basic Algorithms Relationship Modeling

T7, T8, T9 Common Data Structures Algorithm Modeling,
and Algorithms Abstract Stateful Thinking

T10, T11, T12 Advanced Data Structures Time-space Trade-off,
and Algorithms Mathematical Deduction

All the programming problems in TutorCode are derived from
real-world software development contexts and have been curated
by 20 senior software experts. As illustrated in Figure 1a, each
problem description includes vital elements such as the title, task
objective, input-output formats, and computational constraints. The
constraints describe the accepted data formats and ranges of in-
put values, while the limitations impose bounds on execution time
and memory usage. The problems are comprehensive, covering the
common data structures and algorithms, allowing for a thorough
evaluation of LLMs’ code capabilities across diverse software de-
velopment scenarios. For each programming problem, TutorCode
contains 5-10 sets of paired input-output test cases, as detailed in
Figure 1d. Since 2017, these test cases have been continually refined
to ensure their quality. Tutor guidance is provided as targeted hints
after a code review without revealing the corrected code, as shown

Table 2: Statictics of TutorCode.

Title Category Tier Codes1 Lines2 Hunks3

Absolute Value Sorting Branch T1 85 29.5 2.9
Number of Days in a Month Branch T1 64 20.5 2.6

Binary Tree Sorting Binary Tree T10 36 45.6 4.9
Magical Key Char T2 81 23.8 3.0

Receipt Loop T2 15 32.6 2.0
Chasing the Enemy Loop T3 88 15.1 2.1

Compression Technology Array T3 22 33.3 2.9
Find the Longest Word Loop T3 67 24.9 3.7

Advanced Integer Sorting Sort T4 66 32.8 3.1
Gem Collector II Sort T4 26 46.3 4.0

Maximum Submatrix Enumeration T4 33 36.7 3.2
Artificial Intelligence Ad Hoc T5 63 41.5 4.4

Onion Girl’s Flying Chess Recursion T5 20 29.4 4.2
Annoying Queue Jumping Queue T6 60 41.6 3.3

Complex Stacks Stack T6 22 74.6 5.9
Talent Show Vector T6 54 35.0 3.9

Four Squares Theorem Enumeration T7 30 25.5 3.5
High Precision Factorial Big Integer T7 11 46.8 4.4

p Nodes Tree Structure T7 48 40.3 4.4
Perfect Match Prefix Sum T7 15 31.5 3.3

Program Design T2 Binary Search T7 8 31.9 3.4
Program Design T3 Big Integer T7 23 27.0 2.8
2n Queens Problem DFS T8 37 52.3 4.9

Elevator Maths T8 26 31.3 5.1
Going Outdoors DFS T8 19 47.3 2.8

Information Parser Maths T8 34 65.4 6.1
Super Bookshelf 2 DFS T8 14 27.9 2.7

Escape DP T9 24 74.2 5.8
I Want to Stay Healthy Today DP T9 33 38.4 4.0

Noble Shops DP T9 8 33.5 5.1
Furious Stones DP T10 30 30.0 3.4

Maze BFS T10 20 76.2 9.3
Foodie Mr. Garlic DP T11 23 47.6 5.6

Highways Graph Theory T12 13 104.8 13.3
Mr. Garlic’s Treasure Hunt Graph Theory T12 21 145.6 10.3

1 “Codes” refers to the number of incorrect codes.
2 “Lines” refers to the average lines of incorrect codes.
3 “Hunks” refers to the average changed hunks between incorrect codes and corrected codes.

in Figure 1b. Solution descriptions offer a high-level approach rather
than specific code implementations, depicted in Figure 1c.

Contrastingly, TutorCode is uniquely structured into 12 diffi-
culty tiers, each labeled by software developer experts. These tiers
are further subdivided into four stages. The objectives for each stage
are outlined in Table 1 and correspond to critical cognitive stages
in the professional development of novice developers. Each tier has
at least two programming problems and a minimum of 34 incorrect

Conference’17, July 2017, Washington, DC, USA Yang and Tian et al

codes. A hierarchical arrangement of 20 knowledge tags, organized
by tier, is provided in Table 2. As one ascends the difficulty tier,
there is a corresponding increase in algorithmic complexity and the
intricacy of code implementation. On average, each programming
problem in TutorCode includes 7.27 domain expert-designed test
cases that have been consistently evaluated as sufficiently valid for
assessing code correctness from 2017 to the present. To avoid flaky
tests for the repaired codes, we offer a public testing API for each
programming problem within TutorCode, facilitating the direct
acquisition of results and eliminating environmental instabilities.

We have preprocessed incorrect codes by removing duplicates
disregarding whitespace differences, to ensure the uniqueness of
bugs within TutorCode. Compared to widely-used Java repair
benchmark Defects4J [26], TutorCode exhibits significant assess-
ment diversity, not only in the availability of tutor guidance infor-
mation but also in terms of bug complexity. Only 18.6% of bugs in
TutorCode involve one modified hunk versus 64.2% in Defects4J.
TutorCode spans a wider array of complexities, from one to more
than six modified hunks. Additionally, in TutorCode, 47.8% of
incorrect codes contain multiple functions, and 38.4% of incorrect
codes exhibit defects across multiple functions, while all the buggy
codes in Defects4J are single-function modifications. TutorCode
provides a foundation for future investigations into the repair ca-
pabilities of tools across various complexities.

3.4 Evaluation Metrics

Given LLM’s inherent randomness, multiple requests with an
identical prompt may yield different outputs. Multiple requests are
made to LLMs using the same prompt to mitigate this randomness
and facilitate robust analytical outcomes. Prior research has shown
that typically, five instances are generated using LLMs for each
incorrect code.
1. Repair Correctness. This study evaluates the correctness of
LLM-based repairs through two key quantitative metrics: TOP-5
and AVG-5. TOP-5 quantifies the likelihood that LLMs will produce
at least one accurate repair out of five attempts. This measurement
is designed to align with the highest number of code revisions most
developers are willing to review [29]. Additionally,AVG-5 is a more
stable metric than the somewhat unpredictable TOP-1 that LLMs
produce; it reflects the mean number of accurate repairs across five
trials.
2. Patch Precision. In programming education scenarios, min-
imizing code changes is the key to preserving intent for students,
aiding their understanding of how to fix bugs [22, 59]. Existing
program repair tools often generate larger size patches that deviate
from the original codes [68], while optimal patches should be mini-
malistic, addressing code defects without introducing unnecessary
modifications [12]. Therefore, evaluating the size of patches gener-
ated by LLMs becomes vital in assessing the precision of LLM-based
repair methods. Gulwani et al. [22] introduced the Relative Patch
Size (RPS) as a metric to quantify patch size. RPS is formulated as
follows:

𝑅𝑃𝑆 (𝐴𝑆𝑇𝑖 , 𝐴𝑆𝑇𝑟) =
𝑇𝐸𝐷 (𝐴𝑆𝑇𝑖 , 𝐴𝑆𝑇𝑟)

𝑆𝑖𝑧𝑒 (𝐴𝑆𝑇𝑖)
Here, 𝐴𝑆𝑇𝑖 and 𝐴𝑆𝑇𝑟 denote the Abstract Syntax Tree (AST) of

the incorrect code and LLM-generated repaired code, respectively,

while 𝑇𝐸𝐷 (𝐴𝑆𝑇𝑖 , 𝐴𝑆𝑇𝑟) is the Tree-Edit-Distance (TED) between
them. 𝑆𝑖𝑧𝑒 (𝐴𝑆𝑇𝑖) represents the AST node count of the incorrect
code. According to the formula, RPS scores can exceed 1.0 and
approaching infinity for null programs, and they are inherently
affected by the distribution of successful repairs. This study intro-
duces a newmetric, the Relative Patch Size Ratio (RPSR), to address
this limitation and utilize ground truth corrected codes. RPSR is
defined as:

𝑅𝑃𝑆𝑅(𝐴𝑆𝑇𝑖 , 𝐴𝑆𝑇𝑐 , 𝐴𝑆𝑇𝑟) =
𝑅𝑃𝑆 (𝐴𝑆𝑇𝑖 , 𝐴𝑆𝑇𝑟)
𝑅𝑃𝑆 (𝐴𝑆𝑇𝑖 , 𝐴𝑆𝑇𝑐)

=
𝑇𝐸𝐷 (𝐴𝑆𝑇𝑖 , 𝐴𝑆𝑇𝑟)
𝑇𝐸𝐷 (𝐴𝑆𝑇𝑖 , 𝐴𝑆𝑇𝑐)

Where 𝐴𝑆𝑇𝑐 means the abstract syntax tree of ground truth
corrected code. For each LLM-fixed code, a lower RPSR means
a more precise patch, while RPSR values lower than 1.0 indicate
smaller patch sizes produced by LLMs compared to ground truth
patches.

3.5 Models

This study evaluates twelve state-of-the-art LLMs, divided into two
categories: eight open-source LLMs and four closed-source LLMs.
The LLMs are selected based on the number of downloads from
official repositories hosted by HuggingFace. The open-source LLMs
are shown in Table 3, featuring parameter sizes ranging between 6b
and 16b. Within this table, the column labeled #Param specifies the
size of the model parameters, and the Downloads column provides
the aggregate number of downloads for each LLM up to Septem-
ber 2023 across all sub-categories. The HumanEval TOP-1 column
presents the TOP-1 performance metric for each LLM, as measured
by the HumanEval [11] benchmark.

Table 3: 8 selected open-source LLMs (Sept. 2023).

Model Training Dataset #Param Downloads HumanEval TOP-1

CodeLlama-instruct-13B N.R. 13B 522.6k 42.7 [58]
Vicuna-13B BigQuery 13B 440.2k 15.5 [40]

CodeGen-6B / 16B BigQuery 6B / 16B 91.1k 27.7 / 32.2 [40]
StarChat-alpha Stack Dedup v1.2 16B 82.6k 30.0 [6]
CodeT5p-16B CodeSearchNet 16B 21.7k 30.9 [41]
Incoder-6B N.R. 6.7B 12.4k 15.6 [40]

Replit-code-v1 Stack Dedup v1.2 2.7B 2.3k 21.9 [57]

Table 4 enumerates the closed-source LLMs, with the Institution
column describing each model to its respective affiliated organiza-
tion. The remaining columns in this table shared the same attributes
as those outlined in Table 3.

Table 4: 4 selected closed-source LLMs.

Model Institution #Param Usage Type HumanEval TOP-1

GPT-4-0613-8k OpenAI 1800B API / Web 67.0 [48]
GPT-3.5-Turbo-0613-4k OpenAI 175B API / Web 48.1 [48]

Claude-instant-v1 Anthropic 52B Web 47.6 [41]
Bard Google 137B Web 44.5 [41]

In the subsequent experiments, specific abbreviations are used
for ease of reference: GPT-4 to GPT-4-0613-8k, GPT-3.5 to GPT-3.5-
Turbo-0613-4k, Claude to Claude-instant-v1, StarChat to StarChat-
alpha, CodeLlama to CodeLlama-instruct-13B. The sampling tem-
perature for these selected LLMs is set to a consistent value of 1.0,
which aligns with the default settings employed across most LLMs.

Cref: An LLM-based Conversational Software Repair Framework for Programming Tutors Conference’17, July 2017, Washington, DC, USA

3.6 Prompts and Augmented Information

1 This is a programming problem description:
2 {{description}}
3 This is an incorrect code to the problem:
4 {{incorrect code}}
5 You are a software engineer. Can you repair the incorrect code?

Figure 2: The prompt format of the baseline.

The performance of LLMs in repair tasks is significantly influ-
enced by the prompt’s design [10, 27, 64]. The optimal prompt for-
mat, depicted in Figure 2, mitigates the adverse impact of lengthy
prompts. This format includes a problem description, an incorrect
code encased in triple backticks, and a task prompt.

Figure 3: The baseline’s prompt structure entails three aug-

mented information types.

To assess the impact of augmented information on LLM’s re-
pair capabilities, comprising tutor guidance, solution description,
and failing test cases, a uniform prompt structure was used in the
following experiments to avoid sensitive prompts for LLMs. This
framework, displayed in Figure 3, initiates with a problem descrip-
tion and incorrect code consistent with the baseline prompt. It then
incorporates one or more types of augmented information. The
solution description commences with the phrase "This is a solution
to the problem:", followed by the complete content of the solution
description. In the context of tutor guidance, content is explicitly
provided. When presenting failing test cases, the framework em-
ploys the introductory phrase "This incorrect code failed to pass the
following test cases:" succeeded by the corresponding failed input-
output pairs. The concluding task description retains alignment
with the baseline, thus facilitating a rigorous comparative analysis
of the impact of augmented information on the repair performance
of LLMs.

4 EXPERIMENT & RESULT

4.1 Realistic Repair Performance of LLMs

[Experiment Goal]: We aim to investigate the realistic repair per-
formance of 12 state-of-the-art LLMs and an existing ITS technique,
utilizing the TutorCode as our benchmark.
[ExperimentDesign]:This experiment provides LLMswith prompts
in the baseline format, as described in Section 3.6. The repair ca-
pabilities of LLMs are assessed in terms of three metrics: TOP-5,
AVG-5, and RPSR, as detailed in Section 3.4. The AVG-5 results of 5

best-performing LLMs across 12 tiers are calculated to compare the
repair performance of LLMs across various tiers and analyze their
trends. Additionally, we analyze the impact of code length on the
repair capabilities of LLMs. We calculate the boxplot distribution of
the length of incorrect codes for correct and incorrect predictions
generated by LLMs.

Table 5: TOP-5, AVG-5, RPSR results of 12 selected LLMs on

TutorCode.

Model TOP-5 AVG-5 H-TOP-1* RPSR

GPT-4 66.5% 52.0% 67.0% 3.748
GPT-3.5 56.8% 41.5% 48.1% 5.072
Claude 34.1% 20.3% 47.6% 4.083
Bard 27.9% 16.8% 44.5% 4.728

CodeLlama 15.9% 6.8% 42.7% 3.635
StarChat 11.7% 5.7% 30.0% 8.028

Vicuna-13B 1.4% 0.5% 15.5% 6.140
CodeGen-multi-16B 0.8% 0.3% 32.2% 1.745
CodeGen-multi-6B 0.0% 0.0% 27.7% /

CodeT5p 0.3% 0.1% 30.9% 1.013
Incoder 0.2% 0.1% 15.6% 0.860

replit-code-v1 0.1% 0.1% 21.9% 0.959

DrRepair 0.2% 0.2% / 1.731
* “H-TOP-1” represents the TOP-1 of LLMs on the HumanEval [11].

Table 6: AVG-5 results of 5 best-performing LLMs across 12

tiers.

Tier GPT-4 GPT-3.5 Claude Bard CodeLlama

T1 0.946 0.879 0.715 0.577 0.262
T2 0.885 0.615 0.198 0.158 0.083
T3 0.706 0.576 0.267 0.190 0.051
T4 0.664 0.576 0.293 0.298 0.144
T5 0.169 0.096 0.012 0.012 0.000
T6 0.493 0.346 0.037 0.051 0.052
T7 0.504 0.363 0.113 0.061 0.060
T8 0.285 0.192 0.114 0.111 0.054
T9 0.139 0.139 0.031 0.018 0.000
T10 0.186 0.070 0.040 0.042 0.000
T11 0.217 0.130 0.026 0.026 0.000
T12 0.000 0.000 0.000 0.000 0.000

[Experiment Result]: Table 5 presents the repair performance
of 12 LLMs, comprising 4 closed-source LLMs first, followed by 8
open-source LLMs. The table shows that the closed-source LLMs
exhibit superior performance compared to the open-source LLMs
across multiple evaluation metrics, including TOP-5, AVG-5, and
RPSR. Regarding correctness metrics, TOP-5 and AVG-5, GPT-4
demonstrates the highest performance, achieving a TOP-5 of 66.5%
and an AVG-5 of 52.0%, closely followed by GPT-3.5. The gap in
performance between Claude/Bard and GPT-3.5/4 is notably signifi-
cant within the TOP-5 and AVG-5 metrics. Among the open-source
LLMs, CodeLlama and StarChat emerge as the best-performing for
correctness, indicated by TOP-5 and AVG-5. In terms of AVG-5,
CodeLlama achieves 6.8%, while StarChat achieves 5.7%. Except for
CodeLlama and StarChat, Vicuna-13B exhibits the highest perfor-
mance in terms of correctness, achieving merely a TOP of 1.9% and
an AVG-5 of 0.6%. This result suggests that other open-source LLMs
are ineffective for program repair tasks. Furthermore, among all the

Conference’17, July 2017, Washington, DC, USA Yang and Tian et al

LLMs with AVG-5 scores exceeding 1%, CodeLlama stands out with
the lowest RPSR, indicating that CodeLlama excels in generating
precise code patches. DrRepair, having only successfully repaired
two incorrect codes, showcases the limited repair capabilities of tra-
ditional ITS techniques on TutorCode compared to most selected
LLMs.

The table also presents the TOP-1 results of LLMs on the Hu-
manEval benchmark, denoted as H-TOP-1. Open-source LLMs, such
as CodeLlama, CodeGen-multi-16B, StarChat, and CodeT5p, demon-
strate H-TOP-1 results that are closely aligned with closed-source
LLMs. Notably, the H-TOP-1 result of CodeLlama is nearly on par
with that of GPT-3.5. However, when evaluated on TutorCode,
the AVG-5 (i.e., the average TOP-1) results of open-source LLMs
are considerably inferior to those of closed-source LLMs, which
indicates considerable potential for improving open-source LLMs
in practical repair scenarios.

Figure 4: AVG-5 trend of the 5 best-performing LLMs.

Figure 5: Distributions of code lengths for 5 best-performing

LLMs between correct and incorrect repair cases.

We select 5 best-performing LLMs and compute their AVG-5
across 12 tiers, as illustrated in Table 6. The table shows that GPT-4
and GPT-3.5 consistently demonstrate superior performance across
all tiers. Notably, GPT-4 achieves an impressive AVG-5 of 94.6% for
tier T1, and it gradually declines with increasing tier, except tier
T5. The unexpected low AVG-5 results for tier T5 are addressed in
Section 5. Figure 4 emphasizes the descending trend of AVG-5 for
each LLM across the 12 tiers.

Figure 5 illustrates the distributions of code lengths for correct
and incorrect predictions generated by the 5 selected LLMs. It is
observed that correct predictions (present in white) tend to have
shorter code lengths compared to incorrect predictions (present
in grey) across all the selected LLMs. Furthermore, it can be ob-
served that longer incorrect codes adversely impact LLMs’ repair

capabilities, which aligns with the prior research [64]. Statisti-
cal significance between the correct and incorrect distributions
was confirmed through the Mann-Whitney-Wilcoxon (MWW) [42]
test, supporting that correct predictions tend to have shorter code
lengths. As illustrated in the figure, GPT-4 and GPT-3.5 exhibit
better capabilities to handle lengthy prompts.

[RQ-1] Findings: (1) In comparative analysis based on the AVG-5

metric, closed-source LLMs such as GPT-4 and GPT-3.5 demon-

strate a superior performance, registering AVG-5 of 52.0% and

41.5%, respectively, in contrast to a meager 6.8% recorded by lead-

ing open-source LLMs. (2) Although CodeLlama exhibits com-

mendable performance on the HumanEval benchmark with a

TOP-1 score of 42.7%, its correctness significantly declines when

evaluated on TutorCode, trailing GPT-3.5 by a substantial AVG-5

margin of 34.7%. This observation suggests that relying on small-

scale benchmarks such as HumanEval may not accurately assess

an LLM’s repair capabilities. (3) Statistical analyses using box

plots reveal that elongated code adversely impacts the repair per-

formance of LLMs. Insights: (1) The observed disparities in repair

performance between closed-source and open-source LLMs high-

light the imperative for the research community to redouble efforts

to advance open-source LLMs. (2) Given the marked difference

in performance metrics between TutorCode and HumanEval,

it is advisable for the research community to assess the repair

capabilities of LLMs using large-scale, uncrawled benchmarks.

4.2 Enhancements of Augmented Information

[Experiment Goal]: We aim to explore the enhancements of aug-
mented information on the repair capabilities of LLMs.
[Experiment Design]: This experiment leverages 5 LLMs based
on their outstanding performance in RQ-1, including GPT-4, GPT-
3.5, Claude, and CodeLlama. The repair capabilities of LLMs are
evaluated on TutorCode. This experiment evaluates three levels
of augmented information: general hints, specific guidance, and
the automated execution result. Each of these three levels contains
three types of information: solution description, tutor guidance,
and failing test cases, as described in Section 3.6. The prompts
are structured in the format described in Figure 3. Seven different
combinations of these three types of information are evaluated
in this experiment, as detailed in the first column of Table 7. In
the following paragraphs, we denote the combination of all three
types of augmented information as T&S&F. Different types of aug-
mented information are segmented into separate conversational
entries within the T&S&F prompts to mitigate the adverse impacts
of lengthy prompts. The repair capabilities of various combinations
of augmented information are assessed in terms of two metrics:
AVG-5 represents correctness, and RPSR represents patch precision.
In our analysis of the enhancements of augmented information
on the repair capabilities of LLMs across different tiers, we calcu-
late AVG-5 for both the GPT-4 and GPT-3.5 across the 12 tiers for
each combination of information. Subsequently, we analyze the
corresponding performance enhancements and trends on tiers.

Lengthy prompts have been found to have a detrimental influ-
ence on the program repair of LLMs [10, 27, 64]. We calculate the
length of input prompts with various combinations of information

Cref: An LLM-based Conversational Software Repair Framework for Programming Tutors Conference’17, July 2017, Washington, DC, USA

within TutorCode, as illustrated in Figure 6. The extended length
of prompts for failing test cases in the TutorCode dataset is at-
tributable to several factors. Unlike unit tests in other benchmarks,
these test cases encompass comprehensive inputs and outputs, in-
corporating more data. Additionally, we present all failing test cases
of the incorrect code within a single prompt. To reduce the neg-
ative impacts of lengthy prompts, we segment different types of
information into separate conversational entries in this experiment.
[Experiment Result]: Table 7 presents the AVG-5 and RPSR re-
sults of the 5 selected LLMs. The table illustrates that among the
three types of augmented information, tutor guidance emerges as
the most effective in enhancing repair performance across all LLMs,
as indicated by both AVG-5 and RPSR. Conversely, failing test cases
negatively affect the repair performance of GPT-4, Claude, and
Bard, as evidenced by both the AVG-5 and RPSR metrics. This dete-
rioration in performance may be attributed to the lengthy prompt
problem of failing test cases, as illustrated in Figure 6, the same as
previous researchers have found [10, 27, 64]. Meanwhile, it has been
demonstrated that employing LLMs solely with failing test cases
in repair tasks, like ChatRepair [76], can not always surpass cor-
responding baselines on the TutorCode when leveraging Claude,
Bard, and CodeLlama.

For cases combining two types of augmented information, the
combination of tutor guidance and solution description yields the
most significant AVG-5 enhancements across all LLMs except Bard.
Meanwhile, combining tutor guidance and failing test cases outper-
forms other combinations across all LLMs. The table shows that
LLMs do not always attain the highest performance enhancements
by T&S&F among all 7 combinations. For example, Bard, Claude,
and CodeLlama do not achieve the best AVG-5 results. CodeLlama,
in particular, produces a gap of 8.0% compared to solely providing
tutor guidance. All the selected LLMs provided with T&S&F do
not achieve the best RPSR results compared to other combinations.
These findings suggest that the issues of limited attention of LLMs
persist even when all three types of augmented information are
provided separately.

For any combination of augmented information, GPT-4 demon-
strates a significant lead in the AVG-5 metric. The AVG-5 of other
LLMs are ranked in descending order, with GPT-3.5, Claude, Bard,
and CodeLlama following. Notably, CodeLlama exhibits the best
RPSR result among all the selected LLMs. This finding further
proves that CodeLlama achieves a higher patch precision, as dis-
covered in RQ-1.

The AVG-5 results for GPT-4 and GPT-3.5 across 12 tiers are illus-
trated in Figure 7a and Figure 7b. Notably, for GPT-4 and GPT-3.5,
the AVG-5 results for tier T5 are significantly lower than the baseline
when only the solution description is provided. This finding im-
plies potential issues with the solution description of programming
problems in tier T5, further analyzed in Section 5. Furthermore, the
AVG-5 for each successive tier exhibits a decreasing trend, except
for tier T5.

Figure 6: Average tokens of prompt types with different aug-

mented information.

Table 7: AVG-5 and RPSR results of 5 LLMs provided with

various combinations of augmented information.

Combination GPT-4 GPT-3.5 Claude Bard CodeLlama

AVG-5 RPSR AVG-5 RPSR AVG-5 RPSR AVG-5 RPSR AVG-5 RPSR

Baseline 52.0% 3.748 41.5% 5.072 20.3% 4.083 16.8% 4.728 6.8% 3.635

Tutor Guidance (T) 61.4% 2.210 50.9% 2.950 27.1% 1.834 26.7% 1.939 16.8% 2.042
Solution Description (S) 55.6% 4.069 47.4% 5.638 21.3% 4.485 16.7% 4.393 7.7% 3.631
Failing Test Cases (F) 49.7% 4.366 42.2% 6.360 19.4% 5.285 15.1% 5.112 7.5% 4.005

T & S 61.9% 2.947 51.3% 3.069 27.6% 2.568 19.3% 2.497 14.8% 3.011
T & F 59.7% 2.736 51.3% 3.490 27.5% 2.101 26.6% 2.231 16.3% 1.980
S & F 53.2% 4.258 47.0% 6.556 24.9% 4.667 15.9% 5.098 7.9% 5.383

T & S & F 62.3% 2.778 52.4% 5.201 27.6% 3.213 24.4% 4.235 8.8% 3.376

Green cells show the best-performing combination. Gray cells are below the baseline.

(a) GPT-4 (b) GPT-3.5

Figure 7: AVG-5 trend of (a) GPT-4 and (b) GPT-3.5 provided

with three types of augmented information across 12 tiers.

[RQ-2] Findings: (1) Among the three types of augmented in-

formation, tutor guidance notably outperforms the others in en-

hancing the repair capabilities of LLMs, showing a significant

increase of over 6.8% in the AVG-5 metric across all evaluated

LLMs. (2) Conversely, the simple integration of multiple types of

augmented information does not consistently produce benefits over

the baseline. For instance, in terms of Bard, incorporating both

solution description and failing test cases results in a 0.9% AVG-5

decrease relative to the baseline. Insights: Human guidance in-

formation improves the repair capabilities of LLMs significantly;

it is valuable for future researchers to explore assisting rather than

replacing humans in the programming education scenarios.

4.3 Conversational Program Repair

[Experiment Goal]:We introduce an LLM-based conversational
semi-automatic repair framework Cref and investigate its repair
capabilities using augmented information through automated eval-
uation.

Conference’17, July 2017, Washington, DC, USA Yang and Tian et al

Figure 8: Overview of Cref.

[ExperimentDesign]:This experiment employs five top-performing
LLMs identified in RQ-1, including GPT-4, GPT-3.5, Claude, Bard,
and CodeLlama, which are consistent with the methodology used in
RQ-2. Utilizing LLMs with various types of augmented information
often results in lengthy prompts, potentially leading to issues of
limited attention. To counteract the detrimental effects of lengthy
prompts, we introduce a repair strategy termedMultiRegenerate.
This strategy partitions the repair process into three phases: tutor
guidance, solution articulation, and the presentation of failing test
cases. The MultiRegenerate initiates three distinct dialog ses-
sions for each incorrect code, thereby mitigating the detrimental
effects of lengthy prompts. In programming education scenarios, it
is crucial to accelerate the process of repairing students’ debugging
requests [33]. Tutor guidance, due to its considerable impact on
enhancing performance (shown in Table 7), is prioritized as the first
in our approach. Subsequently, LLMs are furnished with solution
descriptions, ranking second in performance improvement. Lastly,
LLMs are provided with failing test cases, which yield the least
performance enhancement related to lengthy prompts.

Although MultiRegenerate mitigates the adverse effects of
lengthy prompts, it discards historical conversation entries. How-
ever, the historical entries could potentially aid LLMs in avoiding
the same errors in subsequent generations [76] and fully utilizing
conversational capabilities, which is similar to the idea of chain-
of-thought (CoT) [72]. To unlock the potential conversational ca-
pabilities of LLMs, we propose a repair framework named Cref.
Figure 8 illustrates the overview of Cref. In Cref, there is only
one dialog session instead of three dialog sessions compared to
MultiRegenerate. The Cref follows three steps: (1) Providing
LLMs with programming problem description, incorrect code with
corresponding tutor guidance, and generates repaired code. If the
repaired code is validated successfully, then the process ends. (2)
Providing LLMs with all historical entries and solution descriptions
to generate a repaired code. If the repaired code is validated suc-
cessfully, the process ends. (3) Providing LLMs with all historical
entries with failing test cases of the last repaired code to generate
the repaired code. The success of the repair process is determined
by whether or not there is a correct repaired code so far.

We evaluate the repair performance of two proposed method-
ologies, MultiRegenerate and Cref, utilizing 5 selected LLMs
on the TutorCode, in terms of AVG-5 and RPSR. We compare
these results with the baseline and T&S&F. We further evaluate the
AVG-5 results of Cref utilizing GPT-4 and GPT-3.5 across 12 tiers
to analyze trends and enhancements compared to the baseline.

To illustrate Cref’s scalability, we compared its repair capabil-
ities with baseline, T&S&F, andMultiRegenerate, using GPT-4
and GPT-3.5, on TutorCodePlus. TutorCodePlus resembles
TutorCode but includes a broader selection of 2,464 incorrect
code submissions. These submissions, which come with tutor guid-
ance, are created by 786 students across 45 distinct programming
problems, consistently classified into 12 tiers. TutorCodePlus inte-
grates all 35 problems from TutorCode, incorporating its original
1,239 instances alongside additional new samples. On average, each
problem in TutorCodePlus includes 6.98 pairs of well-designed
test cases. Notably, while TutorCode features an average of 1.89
functions per incorrect code, TutorCodePlus showcases a similar
complexity with an average of 1.81 functions. TutorCodePlus
does not guarantee the inclusion of codes corrected by the students,
leading us to omit the RPSR metric on TutorCodePlus. Due to
the company’s commercial considerations, TutorCodePlus will
remain proprietary, but we will update TutorCode with more
samples to support the program repair research community.

Table 8: AVG-5 and RPSR results of T&S&F, MultiRegener-

ate, and Cref compared to the baseline.

Model Baseline T&S&F MultiRegenerate Cref

AVG-5 RPSR AVG-5 (↑) RPSR AVG-5 (↑) RPSR AVG-5 (↑) RPSR

GPT-4 52.0% 3.748 62.3% (+10.3%) 2.778 71.5% (+19.5%) 2.815 76.6% (+24.6%) 2.691
GPT-3.5 41.5% 5.072 52.5% (+11.0%) 5.201 62.6% (+21.1%) 3.438 63.8% (+22.3%) 3.454
Claude 20.3% 4.083 27.6% (+ 7.3%) 3.213 38.9% (+18.6%) 2.782 42.3% (+22.0%) 2.768
Bard 16.8% 4.728 24.4% (+ 7.6%) 4.235 35.2% (+14.9%) 2.562 35.4% (+18.6%) 2.618

CodeLlama 6.8% 3.635 8.8% (+ 2.0%) 3.376 22.5% (+15.7%) 2.781 24.0% (+17.2%) 2.880

A smaller RPSR is better, meaning the patch is more precise.

[Experiment Result]: Regarding AVG-5, Cref exhibits superior
lead performance, outperforming the baseline and T&S&F by mar-
gins of 24.6% (GPT-4) and 15.2% (CodeLlama), respectively, and sur-
passing MultiRegenerate. Although MultiRegenerate achieves
satisfactory repair performance, initiating three distinct dialog ses-
sions for each repair requires more computational resources in
practical engineering scenarios. Regarding RPSR, bothMultiRe-
generate and Cref exhibit significant improvements compared to
the baseline and T&S&F. A lower RPSR value indicates greater pre-
cision of patches. Compared toMultiRegenerate, which modifies
the initial incorrect code in a single iteration, Cref interactively
repairs the initial incorrect code over multiple rounds of dialogue.
Despite this, Cref maintains a comparable RPSR toMultiRegen-
erate while achieving a significant lead in AVG-5.

The AVG-5 trends of Cref and baseline across 12 tiers when
utilizing GPT-4 and GPT-3.5 are illustrated in Figure 7a and Figure
7b, respectively. Cref exhibits a significant improvement over the
baseline across all 12 tiers. Furthermore, the AVG-5 results of Cref
exhibit a decreasing trend except for tier T5.

Results on Extend Benchmark:We validate the generalization
of Cref’s repair capability on an extensive benchmark TutorCode-
Plus. On TutorCodePlus benchmark, when prompt LLMs with
the baseline, the AVG-5 result of GPT-4 is 49.3%, and the AVG-5 re-
sult of GPT-3.5 is 39.6%. Both are close to the corresponding results
in RQ-1. When providing LLMs with T&S&F, the AVG-5 of GPT-4
reaches 60.9%, while the AVG-5 of GPT-3.5 reaches 50.1%, which
is an improvement of 11.6% and 10.5% compared to the baseline
respectively, and is similar to the results in RQ-2. When leverag-
ing LLMs with MultiRegenerate strategy, the AVG-5 of GPT-4

Cref: An LLM-based Conversational Software Repair Framework for Programming Tutors Conference’17, July 2017, Washington, DC, USA

reaches 68.3%, while the AVG-5 of GPT-3.5 reaches 60.3%. AVG-5 of
Cref utilizing GPT-4 reaches 74.4% while AVG-5 of Cref utilizing
GPT-3.5 reaches 61.9%. For GPT-4 and GPT-3.5, the AVG-5 of Cref
compared toMultiRegenerate is higher by 6.1% and 1.6%, respec-
tively, and this gap is higher than that of the results on TutorCode.
These results demonstrate the scalability of our findings.

[RQ-3] Findings: (1) In assessing the selected five LLMs, Cref

shows marked improvements across both the AVG-5 and RPSR

metrics when compared to the baseline and the T&S&F. Notably,

every LLM in this experiment exhibits an increase in AVG-5 per-

formance by a minimum of 17.2% over the baseline, with GPT-4

outperforming all others by achieving an impressive 24.6% im-

provement. (2) When compared with MultiRegenerate, Cref

maintains a similar RPSR while securing a higher AVG-5. These

results highlight the advantage of integrating historical conver-

sational entries to enhance the repair capabilities of LLMs. (3)

Utilizing GPT-4 and GPT-3.5, the AVG-5 results of the baseline,

T&S&F, MultiRegenerate, and Cref on the TutorCodePlus

support the generalizability of our earlier findings. Insights: The

performance of Cref up to 76.6% of AVG-5 suggests that Cref

is a useful semi-automatic repair tool in education scenarios for

assisting programming tutors, and future research could further

explore improving patch precision for the students.

Figure 9: AVG-5 trend of Cref utilizing GPT-4/GPT-3.5.

5 DISCUSSION

5.1 Investigation of Outlier Data

We discuss the generally less-than-expected AVG-5 results of LLMs
for Tier 5 to investigate further the factors affecting the repair per-
formance. Tier 5 incorporates two programming problems: Onion
Girl’s Flying Chess and Artificial Intelligence. A subsequent inves-
tigation reveals inherent ambiguities in the statements of both
programming problems and in the solution description of Onion
Girl’s Flying Chess. To address this, we implemented targeted modi-
fications to resolve these ambiguities and recalculated the AVG-5
scores for GPT-3.5 and GPT-4 on tier T5 employing the framework
Cref. Following these adjustments, the AVG-5 score for GPT-4
increases to 76.7%, a gain of 29.7%, whereas GPT-3.5 achieves an
AVG-5 of 59.9%, reflecting an improvement of 28.6%. These findings
suggest that the clarity of the contextual information provided to
LLMs significantly impacts their repair capabilities.

5.2 Industrial Application

On the company’s programming education platform, students learn
to code in C++ by working on given assignments. Novice students
often require guidance to repair incorrect code and yield a correct
solution. Tutors hired by the company help students debug their
code, but this process can be labor-intensive and usually involves
long response times. To address these challenges, we introduced
Cref assisting tutors on a programming education platform to
address students’ debugging requests. First, tutors only need to pro-
vide preliminary guidance instead of debugging solutions, as shown
in Figure 1b. Cref can automatically complete the repair process
in most cases. Subsequently, tutors review Cref ’s generation to
formulate a response to students, ensuring precise and effective
debugging assistance. Experimental results on TutorCode, where
the average tutor guidance consists of just 38.25 words, show that
Cref utilizing such preliminary feedback significantly increases
the success rate of automated program repairs.

The two-month deployment of Cref has demonstrated signifi-
cant reductions in labor costs. The reduction in average response
time for a debugging request, from 26.7 minutes to 7.7 minutes, is at-
tributed to the utilization of Cref. Cref has shifted the tutors’ role
towards providing preliminary guidance rather than full debugging
solutions. The reduction in labor costs by 71.2% indicates that the
same labor cost can address 3.5 times more debugging requirements
from students, making it a cost-effective tutoring solution.

The success of Cref in educational contexts suggests its po-
tential for broader applications, such as code reviews, where it
utilizes reviewer feedback to refine codes, offering developers en-
hanced solutions automatically. This application of Cref directly
contributes to faster code reviews, highlighting its adaptability to
various code-related tasks.

6 THREATS TO VALIDITY

Threats to External Validity. The generalizability of our findings
is influenced by two factors: the scale of benchmarks and the risk of
data leakage. Consequently, we mitigate these threats by employing
a large-scale uncrawled benchmark TutorCode, comprising 1,239
instances. The selection of benchmarks not only aims to cover a
wide array of bugs but also mitigate the risk of data leakage, thereby
enhancing both the generalizability and reliability of our study.
Threats to Internal Validity. The randomness of LLM outputs
influences the reliability of our experimental results. To mitigate
this influence, we have adopted a five-fold repetition strategy in
our experiments, allowing for a more reliable calculation of the
performance metrics TOP-5 and AVG-5. Furthermore, we have
standardized the key parameters including 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 and 𝑡𝑜𝑝_𝑝
for all LLMs in our experiments tomitigate the potential influence of
parameter variations on the reliability of our comparative analyses.
Additionally, automated scripts were employed to extract code
from LLM-generated non-compilable natural language explanations
when provided with incorrect codes and contextual information to
extract compilable codes, ensuring our analysis is based on usable
data.
Threats to Construct Validity. The selection of evaluation met-
rics influences the validity of our findings. To mitigate risks associ-
ated with metric selection and ensure accurate evaluation results,

Conference’17, July 2017, Washington, DC, USA Yang and Tian et al

we selected metrics TOP-5, AVG-5, and the RPSR. These metrics
are well-known for measuring the correctness and precision of
LLMs. To address concerns that these metrics potentially may lead
to biased conclusions, we evaluated Cref on extensive benchmark
TutorCodePlus, which includes 2,464 samples. TutorCodePlus
helps us ensure our findings are solid and can be applied to diverse
coding bugs.

7 CONCLUSION

In this paper, we introduce an extensive uncrawled benchmark Tu-
torCode consisting of 1,239 C++ defect codes and types of associ-
ated information. Utilizing TutorCode, experiments are conducted
to investigate the realistic repair performance of 12 prominent
LLMs, and demonstrate the significant difference on HumanEval
and TutorCode. We investigate how augmented information im-
proves the repair capabilities of best-performing LLMs. The experi-
mental results show that tutor guidance improves the LLM repair
performance the most, while failing test cases improve the least due
to the lengthy prompt problem and even degrades the repair per-
formance for Bard and Claude. To mitigate these negative impacts,
we propose a strategy MultiRegenerate, to minimize the adverse
effects of lengthy prompts, which repairs incorrect code through
three distinct conversational sessions. Finally, we introduce a novel
conversational semi-automatic repair approach Cref, which is en-
gineered to optimize the utilization of augmented information and
conversational capabilities of LLMs. Experimental results indicate
that the repair performance of Cref is a significant lead in AVG-
5 and RPSR metrics compared to the baseline and T&S&F, and
yields superior AVG-5 and comparable RPSR results compared to
MultiRegenerate. These results indicate that incorporating his-
torical failing repairs can significantly enhance repair capabilities
in LLMs by fully exploiting their conversational potential. Cref
acts as an assisting tool through a three-step process: (1) tutors
provide preliminary guidance of the student’s buggy code, (2) based
on this guidance, Cref automatically performs code debugging, and
(3) tutors leverage Cref ’s generation to reply to students. This
approach has cut response times by 71.2% and reduced costs by
69.9%, improving the tutoring process and student learning expe-
riences. The success of Cref highlights its potential for broader
uses, such as augmenting code review processes by automatically
adjusting codes based on reviewers’ comments, suggesting future
applications for enhancing efficiency in coding-related tasks.

While ChatGPT shows strong performance, its training and infer-
ence require substantial computation due to hugemodel parameters.
Future research could focus on optimizing other open-source LLMs
with augmented information and conversational capabilities to re-
duce computational costs, especially for enhancing programming
guidance in educational scenarios.

OPEN SCIENCE

The artifact of this study is publicly available athttps://anonymous.

4open.science/r/CREF-163D.

REFERENCES

[1] Umair Z Ahmed, Zhiyu Fan, Jooyong Yi, Omar I Al-Bataineh, and Abhik Roy-
choudhury. 2022. Verifix: Verified repair of programming assignments. ACM

Transactions on Software Engineering and Methodology (TOSEM) 31, 4 (2022),
1–31.

[2] Rachith Aiyappa, Jisun An, Haewoon Kwak, and Yong-Yeol Ahn. 2023. Can we
trust the evaluation on ChatGPT? arXiv preprint arXiv:2303.12767 (2023).

[3] Gabin An, Minhyuk Kwon, Kyunghwa Choi, Jooyong Yi, and Shin Yoo. 2023.
BUGSC++: A Highly Usable Real World Defect Benchmark for C/C++. In 2023

38th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 2034–2037.

[4] Anthropic. 2023. Introducing Claude. Anthropic Blog (2023).
https://www.anthropic.com/index/introducing-claude.

[5] Amos Azaria, Rina Azoulay, and Shulamit Reches. 2023. ChatGPT is a Remarkable
Tool–For Experts. arXiv preprint arXiv:2306.03102 (2023).

[6] Hannah McLean Babe, Sydney Nguyen, Yangtian Zi, Arjun Guha, Molly Q
Feldman, and Carolyn Jane Anderson. 2023. StudentEval: A Benchmark of
Student-Written Prompts for Large Language Models of Code. arXiv preprint
arXiv:2306.04556 (2023).

[7] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon,
Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn
Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr,
Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Luko-
suite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi
Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott John-
ston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy
Telleen-Lawton, Tom Conerly, TomHenighan, Tristan Hume, Samuel R. Bowman,
Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, SamMcCandlish,
Tom Brown, and Jared Kaplan. 2022. Constitutional AI: Harmlessness from AI
Feedback. arXiv:2212.08073 [cs.CL]

[8] Marcel Böhme, Charaka Geethal, and Van-Thuan Pham. 2020. Human-in-the-
loop automatic program repair. In 2020 IEEE 13th international conference on

software testing, validation and verification (ICST). IEEE, 274–285.
[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural

information processing systems 33 (2020), 1877–1901.
[10] Jialun Cao, Meiziniu Li, Ming Wen, and Shing chi Cheung. 2023. A study on

Prompt Design, Advantages and Limitations of ChatGPT for Deep Learning
Program Repair. arXiv:2304.08191 [cs.SE]

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[12] Yukun Dong, Meng Wu, Li Zhang, Wenjing Yin, Mengying Wu, and Haojie Li.
2020. Priority Measurement of Patches for Program Repair Based on Semantic
Distance. Symmetry 12, 12 (2020), 2102.

[13] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated repair of programs from large language models. In 2023

IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
1469–1481.

[14] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Scott Yih, Luke Zettlemoyer, and Mike Lewis. 2022. InCoder: A
Generative Model for Code Infilling and Synthesis. In The Eleventh International

Conference on Learning Representations.
[15] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.

2022. VulRepair: a T5-based automated software vulnerability repair. In Pro-

ceedings of the 30th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 935–947.
[16] Xiang Gao, Yannic Noller, and Abhik Roychoudhury. 2022. Program repair. arXiv

preprint arXiv:2211.12787 (2022).
[17] Xiang Gao and Abhik Roychoudhury. 2020. Interactive patch generation and

suggestion. In Proceedings of the IEEE/ACM 42nd International Conference on

Software Engineering Workshops. 17–18.
[18] Li Ge, Peng Xin, Wang Qianxiang, Xie Tao, Jin Zhi, Wang Ji, Ma Xiaoxing, and Li

Xuandong. 2023. Challenges from LLMs as a Natural Language Based Human-
machine Collaborative Tool for Software Development and Evolution. In Journal

of Software, 2023, 34(10). 4601–4606.
[19] Ukeje Chukwuemeriwo Goodness. 2023. What Is Claude AI and Why Should

You Use It? MakeUseOf (2023). https://www.makeuseof.com/what-is-claude-ai-
why-use-it/

https://anonymous.4open.science/r/CREF-163D
https://anonymous.4open.science/r/CREF-163D
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2304.08191
https://arxiv.org/abs/2107.03374
https://www.makeuseof.com/what-is-claude-ai-why-use-it/
https://www.makeuseof.com/what-is-claude-ai-why-use-it/

Cref: An LLM-based Conversational Software Repair Framework for Programming Tutors Conference’17, July 2017, Washington, DC, USA

[20] Claire Le Goues, Neal J. Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar T.
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass Benchmarks for Automated Repair of C Programs. IEEE Trans. Software
Eng. 41, 12 (2015), 1236–1256. https://doi.org/10.1109/TSE.2015.2454513

[21] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56–65.

[22] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. 2018. Automated clustering
and program repair for introductory programming assignments. ACM SIGPLAN

Notices 53, 4 (2018), 465–480.
[23] Yang Hu, Umair Z. Ahmed, Sergey Mechtaev, Ben Leong, and Abhik Roychoud-

hury. 2019. Re-Factoring Based Program Repair Applied to Programming As-
signments. In 34th IEEE/ACM International Conference on Automated Software

Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 388–398.
https://doi.org/10.1109/ASE.2019.00044

[24] Dongchen Jiang and Bo Xu. 2022. Generation of C++ Code from Isabelle/HOL
Specification. International Journal of Software Engineering and Knowledge Engi-
neering 32, 07 (2022), 1043–1069.

[25] Nan Jiang, Thibaud Lutellier, Yiling Lou, Lin Tan, Dan Goldwasser, and Xiangyu
Zhang. 2023. Knod: Domain knowledge distilled tree decoder for automated
program repair. arXiv preprint arXiv:2302.01857 (2023).

[26] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database of
existing faults to enable controlled testing studies for Java programs. In Interna-

tional Symposium on Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA -

July 21 - 26, 2014, Corina S. Pasareanu and Darko Marinov (Eds.). ACM, 437–440.
https://doi.org/10.1145/2610384.2628055

[27] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher
Kanan. 2018. Measuring catastrophic forgetting in neural networks. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 32.

[28] YoungJae Kim, Seungheon Han, Askar Yeltayuly Khamit, and Jooyong Yi. 2023.
Automated Program Repair from Fuzzing Perspective. In Proceedings of the 32nd

ACM SIGSOFT International Symposium on Software Testing and Analysis. 854–
866.

[29] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
expectations on automated fault localization. In Proceedings of the 25th interna-

tional symposium on software testing and analysis. 165–176.
[30] Sophia D Kolak, Ruben Martins, Claire Le Goues, and Vincent Josua Hellendoorn.

2022. Patch generation with language models: Feasibility and scaling behavior.
In Deep Learning for Code Workshop.

[31] Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History driven program
repair. In 2016 IEEE 23rd international conference on software analysis, evolution,

and reengineering (SANER), Vol. 1. IEEE, 213–224.
[32] Claire Le Goues, Michael Pradel, Abhik Roychoudhury, and Satish Chandra. 2021.

Automatic program repair. IEEE Software 38, 4 (2021), 22–27.
[33] Changyoon Lee, Junho Myung, Jieun Han, Jiho Jin, and Alice Oh. 2023. Learning

from Teaching Assistants to Program with Subgoals: Exploring the Potential for
AI Teaching Assistants. arXiv preprint arXiv:2309.10419 (2023).

[34] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics. 7871–7880.
[35] Qingyuan Li, Wenkang Zhong, Chuanyi Li, Jidong Ge, and Bin Luo. 2024. Empir-

ical Study on the Data Leakage Problem in Neural Program Repair. Journal of
Software 35, 7 (2024), 0–0.

[36] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu,
Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier,
Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero,
Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan
Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf,
Arjun Guha, Leandro von Werra, and Harm de Vries. 2023. StarCoder: may the
source be with you! (2023). arXiv:2305.06161 [cs.CL]

[37] Yichen Li, Yintong Huo, Zhihan Jiang, Renyi Zhong, Pinjia He, Yuxin Su, and
Michael R Lyu. 2023. Exploring the Effectiveness of LLMs in Automated Logging
Generation: An Empirical Study. arXiv preprint arXiv:2307.05950 (2023).

[38] Bo Lin, Shangwen Wang, Ming Wen, and Xiaoguang Mao. 2022. Context-aware
code change embedding for better patch correctness assessment. ACM Transac-

tions on Software Engineering and Methodology (TOSEM) 31, 3 (2022), 1–29.
[39] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.

QuixBugs: a multi-lingual program repair benchmark set based on the quixey
challenge. In Proceedings Companion of the 2017 ACM SIGPLAN International

Conference on Systems, Programming, Languages, and Applications: Software for

Humanity, SPLASH 2017, Vancouver, BC, Canada, October 23 - 27, 2017, Gail C.
Murphy (Ed.). ACM, 55–56. https://doi.org/10.1145/3135932.3135941

[40] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. arXiv preprint arXiv:2305.01210 (2023).

[41] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,
Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. 2023. WizardCoder:
Empowering Code Large Language Models with Evol-Instruct. arXiv preprint
arXiv:2306.08568 (2023).

[42] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of

mathematical statistics (1947), 50–60.
[43] Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, Xudong Liu, and Chun-

ming Hu. 2023. Template-based Neural Program Repair. In 2023 IEEE/ACM 45th

International Conference on Software Engineering (ICSE). IEEE, 1456–1468.
[44] Martin Monperrus. 2018. Automatic software repair: A bibliography. ACM

Computing Surveys (CSUR) 51, 1 (2018), 1–24.
[45] Chao Ni, Wei Wang, Kaiwen Yang, Xin Xia, Kui Liu, and David Lo. 2022. The

best of both worlds: integrating semantic features with expert features for defect
prediction and localization. In Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering.
672–683.

[46] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2023. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. ICLR (2023).

[47] OpenAI. 2022. Introducing ChatGPT. (2022). https://openai.com/blog/chatgpt
[48] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[49] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730–27744.

[50] Nikhil Parasaram, Earl T Barr, and Sergey Mechtaev. 2023. Rete: Learning Names-
pace Representation for Program Repair. In 2023 IEEE/ACM 45th International

Conference on Software Engineering (ICSE). IEEE, 1264–1276.
[51] Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar,

Adish Singla, and Gustavo Soares. 2023. Generating High-Precision Feedback
for Programming Syntax Errors using Large Language Models. arXiv preprint
arXiv:2302.04662 (2023).

[52] Weiguo Pian, Hanyu Peng, Xunzhu Tang, Tiezhu Sun, Haoye Tian, Andrew
Habib, Jacques Klein, and Tegawendé F Bissyandé. 2023. MetaTPTrans: A meta
learning approach for multilingual code representation learning. In Proceedings

of the AAAI Conference on Artificial Intelligence, Vol. 37. 5239–5247.
[53] Sundar Pichai. 2023. An important next step on our AI journey. Google Technology

Blog (2023). https://blog.google/technology/ai/bard-google-ai-search-updates/.
[54] Julian Aron Prenner, Hlib Babii, and Romain Robbes. 2022. Can OpenAI’s codex

fix bugs? an evaluation on QuixBugs. In Proceedings of the Third International

Workshop on Automated Program Repair. 69–75.
[55] Fangcheng Qiu, Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Xinyu Wang.

2021. Deep just-in-time defect localization. IEEE Transactions on Software Engi-

neering 48, 12 (2021), 5068–5086.
[56] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine

Learning Research 21, 1 (2020), 5485–5551.
[57] Inc. Repl.it. 2023. replit-code-v1-3b. Hugging Face Hub (2023).

https://huggingface.co/replit/replit-code-v1-3b.
[58] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-

qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
Llama: Open Foundation Models for Code. arXiv preprint arXiv:2308.12950 (2023).

[59] Atsushi Shirafuji, Md Mostafizer Rahman, Md Faizul Ibne Amin, and Yutaka
Watanobe. 2023. Program repair with minimal edits using codet5. arXiv preprint
arXiv:2309.14760 (2023).

[60] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An
analysis of the automatic bug fixing performance of chatgpt. arXiv preprint

arXiv:2301.08653 (2023).
[61] Bjarne Stroustrup. 2013. The C++ programming language. Pearson Education.
[62] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kul-

shreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. 2022.
Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239
(2022).

[63] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein,
and Tegawendé F Bissyandé. 2020. Evaluating representation learning of code
changes for predicting patch correctness in program repair. In Proceedings of

the 35th IEEE/ACM International Conference on Automated Software Engineering.
981–992.

[64] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques
Klein, and Tegawendé F Bissyandé. 2023. Is ChatGPT the Ultimate Programming

https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1109/ASE.2019.00044
https://doi.org/10.1145/2610384.2628055
https://arxiv.org/abs/2305.06161
https://doi.org/10.1145/3135932.3135941
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774

Conference’17, July 2017, Washington, DC, USA Yang and Tian et al

Assistant–How far is it? arXiv preprint arXiv:2304.11938 (2023).
[65] Haoye Tian, Xunzhu Tang, Andrew Habib, Shangwen Wang, Kui Liu, Xin Xia,

Jacques Klein, and Tegawendé F Bissyandé. 2022. Is this change the answer to
that problem? Correlating descriptions of bug and code changes for evaluating
patch correctness. In Proceedings of the 37th IEEE/ACM International Conference

on Automated Software Engineering. 1–13.
[66] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL]

[67] Lewis Tunstall, Nathan Lambert, Nazneen Rajani, Edward Beeching, Teven
Le Scao, Leandro von Werra, Sheon Han, Philipp Schmid, and Alexander Rush.
2023. Creating a Coding Assistant with StarCoder. Hugging Face Blog (2023).
https://huggingface.co/blog/starchat.

[68] ShangwenWang, MingWen, Liqian Chen, Xin Yi, and XiaoguangMao. 2019. How
different is it between machine-generated and developer-provided patches?: An
empirical study on the correct patches generated by automated program repair
techniques. In 2019 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM). IEEE, 1–12.
[69] Shangwen Wang, Ming Wen, Xiaoguang Mao, and Deheng Yang. 2019. Attention

please: Consider Mockito when evaluating newly proposed automated program
repair techniques. In Proceedings of the 23rd International Conference on Evaluation
and Assessment in Software Engineering. 260–266.

[70] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and
Steven CH Hoi. 2023. Codet5+: Open code large language models for code
understanding and generation. arXiv preprint arXiv:2305.07922 (2023).

[71] YueWang,WeishiWang, Shafiq Joty, and Steven CHHoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing. 8696–8708.
[72] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,

Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems 35
(2022), 24824–24837.

[73] Emily Winter, Vesna Nowack, David Bowes, Steve Counsell, Tracy Hall, Sæ-
mundur Haraldsson, and John Woodward. 2022. Let’s talk with developers,

not about developers: A review of automatic program repair research. IEEE

Transactions on Software Engineering 49, 1 (2022), 419–436.
[74] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated

program repair in the era of large pre-trained language models. In Proceedings of

the 45th International Conference on Software Engineering (ICSE 2023). Association

for Computing Machinery.
[75] Chunqiu Steven Xia and Lingming Zhang. 2023. Conversational Automated

Program Repair. arXiv:2301.13246 [cs.SE]
[76] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Going:

Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv:2304.00385 [cs.SE]
[77] Boyang Yang, Haoye Tian, Jiadong Ren, Hongyu Zhang, Jacques Klein,

Tegawendé F. Bissyandé, Claire Le Goues, and Shunfu Jin. 2024. Multi-Objective
Fine-Tuning for Enhanced Program Repair with LLMs. arXiv:2404.12636

[78] Michihiro Yasunaga and Percy Liang. 2020. Graph-based, self-supervised program
repair from diagnostic feedback. In International Conference on Machine Learning.
PMLR, 10799–10808.

[79] He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural program repair
with execution-based backpropagation. In Proceedings of the 44th International

Conference on Software Engineering. 1506–1518.
[80] Jooyong Yi, Umair Z Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-

choudhury. 2017. A feasibility study of using automated program repair for
introductory programming assignments. In Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering. 740–751.
[81] Jialu Zhang, José Cambronero, Sumit Gulwani, Vu Le, Ruzica Piskac, Gustavo

Soares, and Gust Verbruggen. 2022. Repairing bugs in python assignments using
large language models. arXiv preprint arXiv:2209.14876 (2022).

[82] Jialu Zhang, De Li, John Charles Kolesar, Hanyuan Shi, and Ruzica Piskac. 2022.
Automated feedback generation for competition-level code. In Proceedings of

the 37th IEEE/ACM International Conference on Automated Software Engineering.
1–13.

[83] Yuwei Zhang, Zhi Jin, Ying Xing, and Ge Li. 2023. STEAM: Simulating the
InTeractive BEhavior of ProgrAMmers for Automatic Bug Fixing. arXiv preprint
arXiv:2308.14460 (2023).

[84] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-a-judge with MT-
Bench and Chatbot Arena. arXiv:2306.05685 [cs.CL]

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2301.13246
https://arxiv.org/abs/2304.00385
https://arxiv.org/abs/2404.12636
https://arxiv.org/abs/2306.05685

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Large Pre-Trained Language Model
	2.2 Interactive Program Repair
	2.3 Intelligent Tutoring System for Programming

	3 Study Design
	3.1 Research Questions
	3.2 Benchmark Selection Criteria
	3.3 Dataset
	3.4 Evaluation Metrics
	3.5 Models
	3.6 Prompts and Augmented Information

	4 Experiment & Result
	4.1 Realistic Repair Performance of LLMs
	4.2 Enhancements of Augmented Information
	4.3 Conversational Program Repair

	5 Discussion
	5.1 Investigation of Outlier Data
	5.2 Industrial Application

	6 Threats to Validity
	7 Conclusion
	References

