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Abstract

Recently large-scale language-image models (e.g., text-
guided diffusion models) have considerably improved the
image generation capabilities to generate photorealistic im-
ages in various domains. Based on this success, current
image editing methods use texts to achieve intuitive and
versatile modification of images. To edit a real image us-
ing diffusion models, one must first invert the image to a
noisy latent from which an edited image is sampled with
a target text prompt. However, most methods lack one of
the following: user-friendliness (e.g., additional masks or
precise descriptions of the input image are required), gen-
eralization to larger domains, or high fidelity to the input
image. In this paper, we design an accurate and quick in-
version technique, Prompt Tuning Inversion, for text-driven
image editing. Specifically, our proposed editing method
consists of a reconstruction stage and an editing stage. In
the first stage, we encode the information of the input image
into a learnable conditional embedding via Prompt Tun-
ing Inversion. In the second stage, we apply classifier-free
guidance to sample the edited image, where the conditional
embedding is calculated by linearly interpolating between
the target embedding and the optimized one obtained in the
first stage. This technique ensures a superior trade-off be-
tween editability and high fidelity to the input image of our
method. For example, we can change the color of a specific
object while preserving its original shape and background
under the guidance of only a target text prompt. Extensive
experiments on ImageNet demonstrate the superior editing
performance of our method compared to the state-of-the-art
baselines.

1. Introduction
Text-based image editing, a long-standing problem in

image processing, aims to modify an input image to align
its visual content with the target text prompts. It has
drawn increasing attention in recent years and many meth-
ods built upon text-to-image generation have been devel-
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Figure 1. Illustration of different methods in editing the color
of the car. Methods based on the original DDIM inversion (i.e.,
DDIM-Edit, DiffEdit and DiffEdit w/o src) cannot preserve the
shape of the car. In contrast, our method successfully changes the
color while preserving the structural information. The target text
is “a yellow car”. The source text is “a red car” for DiffEdit.

oped. In past years, GAN-based image editing meth-
ods [30, 31, 52, 53] achieve impressive results due to the
powerful generation abilities of GANs [37, 23, 33, 60].
However, these methods only work well in domains where
the models are trained. More recently, diffusion models
such as DDPM [18] and score-based generative models [48]
have demonstrated competitive or even better capability of
generating images compared to VAE-, GAN-, flow- and
autoregressive-based models [36, 14, 38, 12]. Especially,
large-scale language-image models (LLIMs), such as Im-
agen [43], DALL-E2 [35] and Stable Diffusion [41], have
attracted unprecedented attention from the research com-
munity and public society. With the help of large-scale pre-
trained language models [34, 10], LLIMs can generate high-
fidelity images well aligned with the provided text prompts
without further fine-tuning. To fully leverage the generation
and generalization capabilities of LLIMs, we aim to develop
a text-driven image editing method based on open-sourced
LLIMs, e.g., Stable Diffusion [41].

Editability and fidelity are two essential requirements
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of image editing tasks. The former requires that the edited
images are supposed to contain visual contents well aligned
with the corresponding textual contents provided in the tar-
get prompts, while the latter expects that areas other than the
edited parts should stay as close to those of the input image
as possible. For example, when modifying the color of a
specific object, its other attributes (e.g., size and shape) are
expected to be preserved. As shown in Fig. 1, given an im-
age of a red car and the target text prompt (“a yellow car”),
the desired edited image should contain a yellow car while
keeping the background as well as the car’s size and shape
unchanged. To achieve this editing, the simplest way is to
first invert the image to a noisy latent via the reversed deter-
ministic DDIM sampling process [46], and then obtain the
edited image via the deterministic DDIM sampling process
with the guidance of the target prompt embedding. We re-
fer to this approach as “DDIM-Edit” in our paper. Although
this approach successfully turns the color of the car to yel-
low (see “DDIM-Edit” in Fig. 1), the background and the
shape of the car change drastically, which obviously fails
to meet the requirement of high fidelity. The reason lies in
that the deterministic DDIM sampling process cannot be re-
versed perfectly in practice. A slight error is amplified by
a large classifier-free guidance scale, and is accumulated in
each sampling step, which consequently results in a signifi-
cantly different image.

To improve fidelity, some methods consider the image
editing tasks as inpainting tasks, which require users to
explicitly provide masks of the inpainting regions [3, 25].
With the mask prior, the background can remain the same,
but masking out image contents also removes important
structural information that is helpful in the editing process,
leading to unsatisfactory editing results. Moreover, ask-
ing users to provide masks is cumbersome and not suit-
able for quick and intuitive text-driven image editing. As
a solution, DiffEdit [7] presents an algorithm that can au-
tomatically generate a mask given a target text prompt to
locate the region to be edited. However, the editability of
DiffEdit largely depends on DDIM-Edit, which may fail to
preserve the structural information of the edited object, e.g.,
the shape of the car (see “DiffEdit” in Fig. 1). Moreover, to
generate an accurate mask, DiffEdit requires a precise text
description of the input image (referred to as “source text”),
hampering the editing efficiency. Without the source text
(see “DiffEdit w/o src” in Fig. 1), the automatically gen-
erated mask cannot locate the body of the car accurately,
further decreasing editability.

In this work, we aim to propose an image editing method
to mitigate all the above problems, i.e., the method should
be user-friendly, generalizable to various domains, and gen-
erate edited images with high fidelity. Specifically, for a
quick and intuitive text-based method, users only need to
provide an input image and the corresponding target text

prompts, without the need for a mask or a source text de-
scribing the input image. Secondly, the method should
be able to operate on real images from various domains.
Thirdly, the objects should be precisely edited with the
background preserved. In some cases, only certain at-
tributes of the objects should be modified, while other at-
tributes are supposed to be left untouched.

To achieve these merits, we believe that image editing
needs a new inversion method based on diffusion models
to reconstruct the input image. Inspired by the classifier-
free guidance [20] and textual-inversion methods [27], we
propose a Prompt Tuning Inversion method to encode the
information of the input image into a conditional embed-
ding. More specifically, we first apply DDIM inversion to
the input image latent to obtain a sequence of noisy ones.
These noisy latents can be taken as a prior trajectory for
reconstructing the original image. Then, we introduce a
learnable embedding in the sampling process. The diffu-
sion model reconstructs the input image step by step along
the trajectory conditioned on this embedding while optimiz-
ing it at the same time. In this way, the contents of the in-
put image are learned in the embedding. Finally, we obtain
a new conditional embedding by linearly interpolating be-
tween the optimized embedding and the target embedding,
resulting in a representation that combines both the struc-
tural information of the input image and the visual content
of the target text.

Overall, our proposed method consists of two stages. In
the first stage, we encode the information of the input image
into a learnable conditional embedding via prompt tuning
in the reconstruction process. In the second stage, a new
conditional embedding is computed by linearly interpolat-
ing between the target embedding and the optimized one
obtained in the first stage, which boosts a trade-off between
editability and fidelity. The classifier-free guidance is then
applied to sample the edited image. In sum, our contribu-
tions are as follows:

• We propose a user-friendly text-driven image editing
method which requires only an input image and a tar-
get text for editing, without any need for user-provided
masks or source descriptions of the input images.

• We propose a Prompt Tuning Inversion method for dif-
fusion models which can quickly and accurately recon-
struct the original image, providing a strong basis for
sampling edited images with high fidelity to the inputs.

• We compare against the state-of-the-art methods both
qualitatively and quantitatively, and show that our
method outperforms these works in terms of the trade-
off between editability and fidelity.



2. Related work
Text-to-image synthesis. Text-guided synthesis has been
widely adopted for image generation [12, 54, 4, 41]. Works
based on generative adversarial networks (GANs) [37, 23,
33, 60] have been proposed for text-to-image synthesis.
CLIP-based methods [8, 54] have also been proposed to uti-
lize the language-image priors from a pre-trained CLIP [34]
model to generate images from texts. Recently, works [11,
18, 19, 29] based on the Diffusion Probabilistic Models
(DPM) [45] have achieved state-of-the-art results in text-
to-image synthesis. Among these works, Latent Diffusion
Model (LDM) [41] trains DPM in the latent space using a
powerful pre-trained auto-encoder, and introduces a cross-
attention layer into the model architecture, thus turning the
diffusion model into a powerful and flexible generator with
greatly improved visual fidelity. Our work of image editing
is based on LDM [41] thanks to its powerful image genera-
tion capability.
Image editing. Image editing with generative adversar-
ial networks (GANs) has been studied extensively [30, 31,
52, 53]. Some other techniques also leverage the image-
text alignment capability of CLIP [34] and transfer it to the
framework of GANs [2, 49, 55]. More recently, the devel-
opment of diffusion models [18, 45, 47] provides a more
flexible design space than GANs for the editing task, while
following a simpler training setup (e.g., SDEdit [26] and
ILVR [6]). Textual Inversion [13] and Dream-Booth [42]
demonstrate the capability to generate diverse images with
unique object characteristics by fine-tuning the diffusion
model with multiple images. Imagic [21] and UniTune [51],
which are based on the powerful Imagen model [43], also
show impressive editing performance. However, the above
methods require restrictive fine-tuning of the pre-trained
model, and thus may not fully leverage the generalization
ability of the pre-trained model due to overfitting or lan-
guage drift. Other methods [3, 28] require a user-provided
mask to guide the diffusion process, making it hard for
them to be interactive. To achieve text-only interactive edit-
ing, some optimization-free methods have been proposed
recently (e.g., Prompt-to-Prompt [16] and DiffEdit [7]) to
automatically infers a mask before editing.
Inversion. In the GAN literature, the inversion process re-
quires one to find a corresponding latent representation of
the given image [59, 56]. This process has been exten-
sively studied for GANs [1, 61, 15, 39, 32, 50]. For dif-
fusion models, the inversion requires to find a noise map
and a conditional vector corresponding to a generated im-
age but simply adding noise and denoising it may arouse
the problem that the image content can be changed drasti-
cally. Works [6, 11, 35] have been proposed to improve the
inversion process. However, it is still challenging for these
methods to generate new instances of a given example while
maintaining fidelity. Textual Inversion [13] and Dream-

Booth [42] propose to learn concepts from images through
textual inversion by either directly optimizing the embed-
ding of the textual concept or fine-tuning the diffusion mod-
els, which can be computationally inefficient. Null-Text In-
version [27] modifies the unconditional textual embedding
that is used for classifier-free guidance instead of the in-
put text embedding, which enables applying prompt-based
editing without the cumbersome tuning of the model pa-
rameters. Different from these methods, our method en-
codes the information of the input image into a learnable
conditional embedding, which provides a helpful prior in
sampling edited image with high fidelity to the input image.

3. Methodology
Given a real or synthesized image I, we aim to edit I

to get an edited image I∗ with the guidance of text. Dif-
ferent from existing methods which require source prompts
provided by users or produced by an off-the-shelf image
captioning model, our proposed editing process is guided
by only target or edited prompt P∗. An overview of our
method is provided in Fig. 2, which consists of two stages.
In the first stage, we encode the information of the input
image into a learnable conditional embedding via prompt
tuning in the reconstruction process. A new conditional
embedding is then computed in the second stage by lin-
early interpolating between the target embedding and the
optimized one from the first stage, thus achieving effec-
tive editing while maintaining high fidelity. Conditioned on
this interpolated embedding, the classifier-free guidance is
adopted to sample the final edited image.

3.1. Background and preliminaries

Diffusion models. Diffusion probabilistic models are de-
signed to learn a data distribution by gradually denoising
normally distributed noise, which corresponds to learning
to reverse a fixed forward diffusion process:

q(xt|xt−1) := N (xt;
√
αtxt−1, (1− αt)I). (1)

In the forward process, normally distributed noise is
gradually added to the sample xt−1 to obtain a more noisy
variant xt. The noise is dependent on a variance schedule αt
where t ∈ 1, ..., T , with T being the total number of steps,
x0 the original image, and xT approximately the standard
Gaussian noise. The reverse process is defined with param-
eters θ:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ). (2)

Using a fixed variance Σθ, only the mean value µθ(xt, t)
needs to be learned. With the parameterization trick, the
network εθ is trained to predict the noise ε, resulting in a
loss, where c represents the conditional embedding:

Et,x0,ε[||ε− εθ(xt, t, c)||2]. (3)
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Figure 2. An overview of our proposed image editing method. Stage 1: we first apply DDIM inversion to the input image embedding to
obtain a diffusion trajectory {z∗t }Tt=0. Then we reconstruct the input image along with the reversed trajectory by optimizing the learnable
conditional embedding ct. Stage 2: we perform classifier-free guidance sampling conditioned on a linear interpolation between target
embedding c∗ and ct at each diffusion step.

⊕
denotes element-wise weighted addition. Red dashes indicate the gradient flow in PTI.

In this work, we employ the deterministic DDIM sam-
pling [46]:

xt−1 =
√
αt−1fθ(xt, t) +

√
1− αt−1εθ(xt, t), (4)

where fθ is the prediction of x0 given xt at step t. Given a
noisy image xT , the noise is gradually removed to generate
an image x0 by applying Eq. 4 for T steps.
Latent diffusion. Instead of operating in the image pixel
space, Latent Diffusion Models [41] (LDMs) utilize an
autoencoder to learn a latent space which is perceptually
equivalent to the pixel space. First, an encoder ENC is
adopted to map a given image x0 into a latent embedding
z0. Then a decoder DEC is designed to reconstruct the
input image given z0, i.e., DEC(ENC(x0))≈x0. The en-
coder downsamples the original images by a factor of 4 or 8.
In this way, the diffusion model operates on a much smaller
representation with lower time complexity and memory bur-
den. Thus, for our method, we apply one of the state-of-the-
art LDMs, Stable Diffusion [41]. In the forward and reverse
process described above, we only need to replace the image
xt with its latent embedding zt at each step.
Classifier-free guidance. Our editing method is built upon
text-guided diffusion models. In Stable Diffusion, the text
P is fed into a pre-trained CLIP [34] text encoder τθ to ob-
tain its corresponding embedding and the underlying UNet
model is augmented with the cross attention mechanism,
which is effective for generating visual contents conditioned
on the text P . One of the key challenges in this kind of gen-
eration models is the amplification of the effect induced by
the conditional text. To this end, the classifier-free guidance
technique is proposed, where the prediction for each step is

a combination of conditional and unconditional predictions.
Formally, let c = τθ(P) be the conditional embedding vec-
tor and ∅ = τθ(“”) be the unconditional one, the classifier-
free guidance prediction is calculated by:

ε̃t = εθ(zt, t,∅) + ω · (εθ(zt, t, c)− εθ(zt, t,∅)), (5)

where ω is the guidance scale parameter.

3.2. Problems of DDIM inversion

Given an input image I and a target prompt P∗, we aim
to edit I to make its visual content consistent with textual
content in P∗, while preserving a maximal amount of de-
tails from I. The above two aspects are referred to as ed-
itability and input image fidelity, respectively.

To achieve effective editing while maintaining high fi-
delity, we first need to inverse the input image into an ap-
propriate noise map, based on which the edited image can
be sampled. Eqs. 1 and 2 show a naive way to add noise
to the input image and then denoise it through the diffusion
network, respectively. However, as the sampling process is
stochastic, the samples generated from the same latent can
be different every time. Even if the sampling process be-
comes deterministic, the random noise in the forward pro-
cess still makes the generated image content change sig-
nificantly. To address this issue, DiffusionCLIP [22] re-
verses the deterministic DDIM sampling process in Eq. 4
based on the assumption that the ordinary differential equa-
tion (ODE) process can be reversed within the limit of small
steps:

zt+1 =
√
αt+1fθ(zt, t) +

√
1− αt+1εθ(zt, t), (6)
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Figure 3. Reconstruction quality of our Prompt Tuning Inversion,
and DDIM inversion with different classifier-free guidance (CFG)
scales ω in the sampling process. ω=0 in the forward process for
all methods.

ωenc

ωdec 0.0 1.0 2.5 5.0 7.5

0.0 21.36 19.79 17.04 14.88 13.64
1.0 17.16 21.94 18.22 15.47 14.02
2.5 14.51 15.73 18.13 15.74 14.24
5.0 11.30 11.48 11.70 12.12 12.06

Table 1. Reconstruction quality by measuring the PSNR score of
DDIM inversion with different classifier-guidance scales ω. ωenc

and ωdec denote the guidance scale used in the DDIM forward and
sampling processes, respectively.

where zt is the latent embedding of xt.
To investigate the reconstruction performance of DDIM,

we first invert the latent embedding of the input image into
noise maps via Eq. 6, and then use the deterministic DDIM
sampling process in Eq. 4 to reconstruct the input. Note
that both processes are performed with unconditional diffu-
sion models, i.e., the classifier-free guidance scale in Eq. 5
is set to ω = 0 for both forward and reverse sampling pro-
cesses. Although a slight error is incorporated in every step
as ODE process cannot be reversed perfectly in practice, the
accumulated error is negligible, and DDIM inversion can
nearly reconstruct the original image (see “CFG (ω= 0.0)”
in Fig. 3). However, to generate an image well aligned with
the conditional text prompt using Stable Diffusion, a large
guidance scale ω> 1 is necessary for the sampling process
in Eq. 4. This arouses the problem that when enlarging ω,
the generated images are far from the original ones as shown
in Fig. 3. We believe that when ω of the sampling process is
different from that of the forward process, the accumulated
error would be amplified, leading to unsatisfactory recon-
struction quality. This can be illustrated in Table 1, i.e.,
the best reconstruction quality in each line is obtained when
ω used in the DDIM sampling process is the same as that
used in the forward process. Even if ω used in the forward
and sampling processes are kept the same, PSNR still de-
creases with ω increasing (see the numbers in bold in Ta-

ble 1). The above analysis demonstrates that it is hard for
DDIM inversion to achieve a satisfactory trade-off between
editability (which requires larger ω) and fidelity (which re-
quires smaller ω). To address this issue, we propose a new
inversion technique, i.e., Prompt Tuning Inversion.

3.3. Prompt tuning for inversion

To successfully invert real images into the model’s do-
main, recent works optimize the textual encoding, the net-
work’s parameters, or both. Motivated by Pivotal Inver-
sion [40], we replace the conditional embedding of the text
prompt with an optimized one, referred to as Prompt Tun-
ing in this work. Namely, for each input image, we optimize
only the conditional embedding c so that it encodes impor-
tant information of the input image which helps the recon-
struction. The parameters of the diffusion network and the
text encoder τθ are frozen during prompt tuning.

We first initialize z∗0 =z0 =ENC(x0), and adopt DDIM
inversion with ω = 0 to obtain a trajectory of noisy latent
codes {zt}Tt=1. Then we initialize z̃T = z∗T and perform the
following optimization to the conditional embedding c with
ω>1 for the timestamps t=T, ..., 1, each for N iterations:

ct = arg min
ct

||z∗t−1 − zt−1(z̃t, t, ct)||2. (7)

For brevity, zt−1(z̃t, t, ct) denotes applying a DDIM sam-
pling step using z̃t and the conditional embedding ct at the
timestep t. At the end of each timestep, we update

z̃t−1 = zt−1(z̃t, t, ct). (8)

Finally, we can reconstruct the input image by using the
noise latent z̃T = z∗T and the optimized conditional embed-
dings {ct}Tt=1. In the next subsection, we will introduce the
approach to editing images with the target text prompt and
the conditional embeddings.

3.4. Prompt tuning for editing

Since the sequence of the conditional embeddings
{ct}Tt=1 is optimized to fully reconstruct the input image,
we believe that these optimized conditional embeddings
have contained the most information of the original image,
and thus ensure high fidelity. To achieve the desired mod-
ification, these optimized embeddings are adopted to per-
form the editing by advancing in the direction of the tar-
get text embedding c∗ = τθ(P∗) to ensure good editability
also. More formally, in the second stage, we simply inter-
polate between the target embedding c∗ and the optimized
ct linearly at each timestamp. For a given hyper-parameter
η ∈ (0, 1], we obtain

ct = η · c∗ + (1− η) · ct, (9)

where the first term ensures the effective editability corre-
sponding to the semantic contents in the target text, while



the second term guarantees a good reconstruction of the
original image. The algorithm is presented in Lines 14-21
in Algorithm 1. Note that when η=0 or η=1, the output of
our editing method is the reconstructed original image, or
the output of the baseline DDIM-Edit, respectively.

Intuitively, our editing method is to find an intermediate
representation between the original image and the output of
DDIM-Edit. For a desired modification, the intermediate
representation is supposed to contain both the structural in-
formation of the source image and the semantic contents of
the target text prompt. Eq. 9 is only one way to achieve this,
which we refer to as condition interpolation. We also test
a different interpolation method (referred to as latent inter-
polation), where we linearly interpolate between the noisy
latent zt and z∗t at each timestamp:

zedtt = η · zt + (1− η) · z∗t , (10)

where z∗t is the noisy latent calculated by DDIM inversion
via Eq. 6, and zt is the latent obtained in the vanilla DDIM
sampling process conditioned on the target embedding. Al-
though this approach is more simple since the process of
prompt tuning is no longer needed, we observe that this in-
terpolation method may lead to cluttered images. This is
because the interpolation of latent embeddings mixes the
source object and the edited object spatially, rather than se-
mantically (as condition interpolation does), leading to clut-
tered contents in images.

3.5. Discussion

Our proposed image editing method shares similar mo-
tivations with existing works [21, 51, 27, 16], all of which
aim to modify an image in a text-driven and mask-free man-
ner. However, our approach differs from them significantly
in the following aspects:

1) Imagic [21] and UniTune [51] finetune the diffusion
models for hundreds of steps to maintain high fidelity to the
input image. In contrast, we only need to optimize the con-
ditional embedding, which greatly reduces computational
budgets.

2) Our proposed Prompt Tuning Inversion is inspired by
the Null-Text Inversion method [27]. However, Null-Text
Inversion chooses to optimize the unconditional embedding
while we optimize the conditional one. Moreover, the edit-
ing process of Null-Text Inversion is achieved by the cross-
attention map control in Prompt-to-Prompt [16], which re-
quires an additional description of the input image. Com-
pared to theirs, our method only needs the target text prompt
and is thus more user-friendly.

Algorithm 1: Prompt Tuning Inversion for Editing
Input: An input image I and a target prompt

embedding c∗ = τθ(P∗)
Output: Edited image I∗.

1 // DDIM Inversion
2 Set guidance scale ω = 0, z∗0 = ENC(I);
3 Compute the intermediate trajectory {z∗t }Tt=0 using

DDIM inversion over I without conditional
guidance via Eq. 6;

4 // Prompt Tuning
5 Set guidance scale ω > 1, η ∈ (0, 1];
6 Initialize z̃T ← z∗T , cT ← c∗;
7 for t = T, T-1, ..., 1 do
8 for j = 0, ..., N-1 do
9 ct ← ct − β∇c||z∗t−1 − zt−1(z̃t, t, ct)||22;

10 end
11 z̃t−1 ← zt−1(z̃t, t, ct), ct−1 ← ct
12 end
13 // Editing
14 Set zedtT ← z∗T ;
15 for t = T, T-1, ..., 1 do
16 ct = (1− η) · ct + η · c∗;
17 zedtt−1 = zt−1(zedtt , t, ct);
18 end
19 I∗ = DEC(zedt0 );
20 return I∗

4. Experiments

4.1. Setup

Implementation details. In our experiments, we adopt
the text-conditional Latent Diffusion Model [41] (known
as Stable Diffusion) with 890M parameters trained on
LAION-5B [44] at 512 × 512 resolution. For the DDIM
schedule, we adopt 50 steps and retain the original hyper-
parameter choices of Stable Diffusion. The encoding ratio
parameter is set to 0.8. The number of iterations to optimize
c per diffusion step is set to N=1. The hyper-parameters β
and η in Algorithm 1 are set to 0.1 and 0.9, respectively, un-
less specified. These allow editing an image in ∼ 1 minute
on a single Tesla V100 GPU. For better performance, we
adopt attention maps to localize the edited regions (referred
to as local blending), and re-weight the attention maps as
in [16].

Evaluation and datasets. In semantic image editing, the
visual content of the edited image is supposed to align well
with the target text prompt (editability) while staying close
to the input image in terms of the unedited parts (fidelity).
For a given method, better editability usually comes at the
cost of decreased fidelity to the input image, and vice versa.
This forms a trade-off curve between the two objectives.
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Figure 4. Comparison with DiffEdit and DDIM-Edit on ImageNet.
For all methods, we set the DDIM encoding ratio to 0.8, and only
vary the mask threshold to draw the trade-off curve.

Following DiffEdit [7], we evaluate different editing meth-
ods by comparing their trade-off curves on ImageNet [9].
Specifically, given an image of one class from ImageNet,
we aim to edit it to another class of ImageNet as instructed
by the target text prompt. The editability and fidelity are
measured using the LPIPS perceptual distance [58] and CS-
FID, which is a class-conditional FID metric [17], respec-
tively. The former measures the distance with the input im-
age while the latter measures both image realism and con-
sistency w.r.t. the target class. For both metrics, lower val-
ues indicate better editing performance.

4.2. Comparison with other methods on ImageNet

We compare our method with DiffEdit and our base-
line DDIM-Edit, since they both share the same DDIM
forward process and a similar sampling process. Besides,
they load the same publicly available pre-trained weights
for a fair comparison. To leverage the generalization capa-
bility of large-scale language-image models, we adopt the
text-conditional Stable Diffusion model “sd-v1-4” instead
of the class-conditional model trained on ImageNet as the
pre-trained model.

As pointed out by DiffEdit [7], different editing meth-
ods often have hyper-parameters which control editability,
e.g., the mask threshold or the encoding ratio. Lower mask
threshold or higher encoding ratio leads to stronger edit-
ing. In our proposed method, we can also control the edit-
ing strength by varying the conditional interpolation ratio η
introduced in Eq. 9. In our evaluation, we fix the DDIM
encoding ratio, and draw the trade-off curve by varying
the mask threshold for all methods1. The results are pre-
sented in Fig. 4, where “DDIM-Global” denotes that the
images are edited via “DDIM-Edit” but without using any
masks, i.e., the editing is performed globally. This can

1As there was no official implementation of DiffEdit available at the
time of writing, we adopted the unofficial implementation for inferring
editing masks from https://github.com/LuChengTHU/dpm-solver.
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Figure 5. Editing examples on ImageNet by our method and
other methods. DDIM-G/DDIM-L indicates the baseline method
DDIM-Edit with/without the local blend trick.

be regarded as a lower bound of fidelity for all methods.
As the mask threshold increases, LPIPS decreases since
fewer parts of the image are edited. Compared to DiffEdit,
our baseline method DDIM-Edit achieves a better trade-off.
Note that the only difference between the two methods is
the approach to generating masks. The comparison shows
that inferring editing masks using cross-attention maps, as
adopted by DDIM-Edit, is more appropriate. Based on
DDIM-Edit, our method can further improve the fidelity
to the input images while maintaining editability. The best
CSFID-LPIPS trade-off of our method demonstrates its su-
periority over DiffEdit and the baseline.

We also present qualitative examples of these methods.
As shown in Fig. 5, without automatically generated masks,
“DDIM-G” tends to modify images globally. For simple
cases (e.g., example (d)), image editing methods with the
original DDIM inversion works well. However, for com-
plex cases, we observe undesired and unreasonable edits to
the objects. In contrast, with the help of the learnable con-
ditional embedding, our method achieves realistic editing
while successfully preserving the original details.

4.3. Ablation study

Comparison to existing inversion methods. We randomly
select 128 images and their corresponding captions from
the COCO validation set [24]. We then apply the follow-
ing reconstruction methods to each image-caption pair: (1)
AE denotes the variational auto-encoder with a slight KL-



Method AE DDIM NTI PTI (ours)
PSNR 26.22 13.64 24.45 25.71
SSIM 0.8564 0.4641 0.8270 0.8501

Table 2. Reconstruction quality of different methods measured by
PSNR and SSIM. For both metrics, higher values indicate better
quality.

iters 1 2 3 4 5
learning rate β = 0.01

NTI 17.05 20.12 22.25 23.61 24.45
PTI 19.36 23.20 24.86 25.47 25.71

learning rate β = 0.1

NTI 23.08 24.74 25.62 25.82 25.91
PTI 24.74 25.23 25.78 25.90 25.97

Table 3. PSNR scores under different optimizing settings.

penalty used in Stable Diffusion. An image is first encoded
by the encoder of AE. Afterwards, the decoder directly re-
constructs the image from the latent. Therefore, we con-
sider AE as an upper bound of reconstruction quality. (2)
DDIM denotes the DDIM inversion method, which is a
baseline inversion method. As analyzed in Sec. 3.2, it usu-
ally outputs a low-quality reconstruction result under a large
classifier-free guidance scale ω. (3) NTI denotes the Null-
Text Inversion method [27], which is our main point of com-
parison. Different from our method, it optimizes the uncon-
ditional embedding. (4) PTI denotes our proposed Prompt
Tuning Inversion method. We introduce a learnable condi-
tional embedding and the optimizing details are presented
in Algorithm 1.

The experimental results are provided in Table 2. For
the diffusion-based inversion methods, we apply the diffu-
sion model in an unconditional manner (i.e., the classifier
guidance scale ω = 0) for the DDIM forward process. For
the sampling process, we set ω = 7.5. As shown in Ta-
ble 2, DDIM inversion fails to reconstruct the original im-
ages since ω in the sampling process is different from that in
the forward process, leading to a low PSNR score (13.64).
For NTI and PTI, we set the number of iterationsN to 5 and
the learning rate β to 0.01. We observe that both methods
can reconstruct the images but the reconstruction quality of
our method is better (25.71 vs. 24.45). To further demon-
strate the effectiveness of our method, we vary N from 1 to
5 and increase the learning rate β from 0.01 to 0.1. The ex-
perimental results in Table 3 shows that the reconstruction
quality of PTI is always better than NTI under all settings,
demonstrating that our method converges faster.
Influence of other hyper-parameters. We also perform
ablation on two core components of our method, i.e., the
interpolation ratio η and the learning rate β in PTI, to mea-
sure their influence in terms of CSFID-LPIPS on ImageNet.
When η = 1 or β = 0, our method reverts to the base-
line method DDIM-Edit. The left panel of Fig. 6 shows
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Figure 6. Left: ablation on the interpolation ratio η. Right: abla-
tion on the learning rate lr (i.e., β) in Prompt Tuning Inversion.
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Figure 7. A failure example on ImageNet: when multiple objects
exist, only one of them is editied successfully.

decreasing η from 1.0 to 0.9 leads to a better CSFID-LPIPS
trade-off but lower ratios result in a worse balance between
editability and fidelity. When we fix η as 0.9 and decrease lr
from 0.1 to 0.05 or 0.01, the trade-off also becomes worse.

5. Conclusion and future work

We propose an intuitive and user-friendly text-based im-
age editing method, which benefits from the superior gen-
eration and generalization capacities of large-scale image
language diffusion models (e.g., Stable Diffusion). The key
idea of our method is that important structural information
of the input image can be encoded into conditional embed-
dings, which can guide the diffusion model to reconstruct
the original image via the sampling process. Based on this,
our method consists of two stages. In the first reconstruc-
tion stage, we propose a novel Prompt Tuning Inversion
method which encodes image information to learnable con-
ditional embeddings quickly and accurately. In the second
editing stage, we introduce an interpolation which linearly
combines the target text embedding with the optimized em-
bedding obtained in the first stage. In this way, the new
conditional embedding contains both information from the
input image and the target text prompt, resulting in an edited
image with an appropriate trade-off between editability and
fidelity. Quantitative and qualitative experimental results
show that our approach achieves superior editing perfor-
mance of images over previous methods.

While our method works well in most scenarios, it still
faces some limitations. As shown in Fig. 7, there are mul-
tiple objects in the input images. However, neither DiffEdit
nor our method changes all “gooses” to “black storks”. This
limitation can possibly be mitigated by operating the atten-



tion maps more precisely [5] or adding different modes of
conditional control [57], providing a research direction for
image editing. We leave these options for future work.
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