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ABSTRACT
Trajectory representation learning plays a pivotal role in support-
ing various downstream tasks. Traditional methods in order to
filter the noise in GPS trajectories tend to focus on routing-based
methods used to simplify the trajectories. However, this approach
ignores the motion details contained in the GPS data, limiting the
representation capability of trajectory representation learning. To
fill this gap, we propose a novel representation learning framework
that Joint GPS and Route Modelling based on self-supervised tech-
nology, namely JGRM. We consider GPS trajectory and route as
the two modes of a single movement observation and fuse infor-
mation through inter-modal information interaction. Specifically,
we develop two encoders, each tailored to capture representations
of route and GPS trajectories respectively. The representations
from the two modalities are fed into a shared transformer for inter-
modal information interaction. Eventually, we design three self-
supervised tasks to train the model. We validate the effectiveness
of the proposed method on two real datasets based on extensive
experiments. The experimental results demonstrate that JGRM out-
performs existing methods in both road segment representation
and trajectory representation tasks. Our source code is available at
https://anonymous.4open.science/r/JGRM-DAD6/.

KEYWORDS
Trajectory representation learning, Spatio-temporal data mining,
self-supervised learning
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1 INTRODUCTION
With the development of location-based services including map ser-
vices and location-based social networks, the generation and analy-
sis of trajectory data have become pervasive, providing valuable
insights into the mobility of various entities, such as individuals,
vehicles and animals. These trajectory data contain rich spatial and
temporal information that can be applied to urban planning [2, 14],
urban emergency management [16, 40], infectious disease preven-
tion and control [1, 10], and intelligent logistics systems [11, 24, 27].
However, to exploit the full potential of these data, the develop-
ment of effective trajectory representation methods has emerged
as a critical topic. Trajectory representation learning focuses on
transforming raw trajectory data into meaningful and compact rep-
resentations that can be used for a variety of tasks, such as travel
time estimation [29], trajectory classification [22] and Top-k similar
trajectory query [36].

Early studies on learning trajectory representations were based
on sequential models designed for a specific downstream task and
trained using the specific task loss [23, 28, 37]. These representa-
tions are not generalized and tend to crash on other tasks. To solve
this problem, seq2seq-based methods have been proposed, which
are trained by reconstructive loss [8, 21, 38] to make generalized
representations. After that, due to redundancy and noise in the GPS
trajectory, the method using route trajectory instead of raw GPS tra-
jectory became mainstream. These methods introduce many NLP
techniques, including Word2Vec and BERT, due to the similarity
between route trajectories and natural language sentences [6, 35].
Recently, with the rise of graph neural networks, researchers have
begun to focus on the spatial relationships between road segments.
Therefore, some two-step methods [9, 12] have been proposed,
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which first model the spatial relationships between road segments
using the topology of the road network, and then use the updated
road segments for temporal modeling using the sequence model.
On this basis, a multitude of self-supervised training methods have
been designed in order to train trajectory representation models in
a task-free manner [17, 25, 34].

However, these methods simply treat road segments as concep-
tual entities (similar to words in natural language), ignoring the
fact that a road segment is a real geographic entity that can inter-
act with objects that pass through it. For example, when a road
segment is congested, the movement pattern of passing vehicles is
different than when the road is clear. So, different types of roads
and different traffic states can really affect mobility. To this end,
we believe that modeling road segments as geographic entities can
effectively improve trajectory representation. Fortunately, the raw
GPS points can serve as localized observations of the geographic
entity. However, while the GPS trajectory contains richer informa-
tion, it also contains a large amount of redundancy and noise and is
not effective at capturing high-level transfer patterns. An intuitive
idea is to combine the GPS view and the route view together to
represent the trajectory more comprehensively.

Figure 1: Route Modeling v.s. Fusion Modeling.

As shown in Figure 1(a), a road segment in the route trajec-
tory, can only be modeled through preceding and succeeding road
segments and lack of direct self-observation. In contrast, road seg-
ments in GPS trajectories offer much richer sampling information
allowing for a fine-grained representation of road segment entities.
Moreover, the context of road segments in the route trajectory can
further refine the road representations. In fact, GPS trajectory and
route trajectory simultaneously describe different perspectives of
the same movement behavior and can complement each other. The
GPS trajectory describes the movement details of the object, which
can reflect the interaction of the object with the geospatial space as
it moves, and can better model the road segment entities. However,
GPS trajectories are inherently noisy and redundant, which can
degrade performance when modeling sequences. Route trajectory
describes the travel semantics of an object, has a robust state trans-
fer record, and can reflect travel intentions and preferences. What’s
more, it loses movement details and cannot effectively model states
in geospatial space. Therefore, joint modeling route trajectory and
GPS trajectory can realize the effective combination of macro and
micro perspectives.

In practice, joint modeling two types of trajectories is a non-
trivial task: (1) Uncertainty in GPS Trajectory. There are a large num-
ber of redundant and noisy signals in the GPS trajectory, and they
can seriously affect the computational efficiency and performance
of the model. (2) Spatio-temporal Correlation in Route Trajectory.

Route has a complex spatio-temporal correlation, the topology of
the road network must be taken into account when an object un-
dergoes a road segment transposition, and the travel time of a road
segment is related to the historical traffic pattern and the current
travel state. (3) Complexity of Information Fusion. Consider that
although GPS trajectory and route trajectory describe the same
concept, the two data sources imply two domains due to differ-
ent perspectives. Fusing information from different domains is a
challenge. Furthermore, in order to obtain the generalized trajec-
tory representation, we would like to train the model using the
self-supervised paradigm.

To address these problems, we develop a novel representation
learning framework that joint GPS and routemodeling based on self-
supervised technology, namely JGRM. It contains three components,
the GPS encoder, the route encoder, and the modal interactor, which
correspond to the three challenges above. Specifically, The GPS
encoder uses a hierarchical design to solve the redundancy and
noise problems in GPS trajectories by embedding the corresponding
sub-trajectories through the road segment grouping bootstrap. The
route encoder uses a road network-based spatial encoder GAT and
a lightweight temporal encoder TE, to capture the spatio-temporal
correlation in the route trajectory. Autocorrelation of the route
trajectory is captured by the Transformer in the route encoder.
Finally, we treat the two trajectories as two modalities and use the
shared transformer as a modal interactor for information fusion. We
also designed two self-supervised tasks to train our JGRM, which
are MLM and Match. The MLM obtains supervisory information
by recovering road segments that were randomly masked before
the trajectory was fed into the encoder. In contrast, Match exploits
the fact that the GPS trajectory and the route trajectory are paired
to generate pairwise losses to guide the two modalities to align the
representation space before it is fed into the modal interactor.

Our contributions are summarized as follows:
• To the best of our knowledge, we are the first to propose joint
modeling of GPS trajectories and route trajectories for trajectory
representation learning.
• Wepropose a trajectory representation learning framework based
on the idea of multimodal fusion which is named JGRM. It con-
sists of a hierarchical GPS encoder to model the characteristics of
road entities, a route encoder that considers the spatio-temporal
correlation of trajectories, and a modal interactor for information
fusion.
• Two self-supervised tasks are designed for model training, which
are generalizable to subsequent research works. Among them,
MLM is used to reconstruct the spatio-temporal continuousness
of the trajectory itself, and CMM is used to fuse mobility infor-
mation from different views.
• Extensive experiments on two real-world datasets validate that
JGRM achieves the best performance across various settings.

2 RELATEDWORK
2.1 GPS Trajectory Representation Learning
GPS trajectories are sequences of spatio-temporal points that con-
tain a large amount of temporal and spatial information. It differs
from general sequence modeling, which only considers the tempo-
ral factor. To better model the spatial properties in GPS trajectories,
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the researchers suggest using simplified trajectories instead of the
original trajectories. The simplifications can be divided into two
main categories: window-based and road network-based. GPS tra-
jectories simplified by road networks are called route trajectories.
traj2vec[38] first proposes to use windows for spatio-temporal
constraints, characterized by sequentially scanning GPS trajec-
tories using custom temporal or spatial windows. The sequence
model encodes each window as a token in the sequence. t2vec[21],
NeuTraj[36], and T3S[33] build on this idea by focusing more on
spatial modeling, using discretized raster windows to process the
original trajectory to obtain the corresponding token. In addition,
TrajCL[4] uses the Douglas-Peucker algorithm to simplify the tra-
jectory to construct the window on the trajectory topology. Re-
garding the source of supervised signals, [38] and [21] employ the
seq2seq framework that uses reconstruction loss to train the model.
In contrast, [36], [33] inspired by metric learning uses metrics from
traditional trajectory similarity algorithms as supervisory signals
to guide training. [4] introduces contrastive learning and designs
multiple trajectory data augmentation strategies to train the model.
However, these approaches focus excessively on macro transition
and ignore motion details. Recent work [22] has shown that using
raw trajectories helps to model fine-grained motion patterns that
can better capture mobility. In this paper, we propose to aggregate
corresponding sub-trajectories in terms of road segments to cap-
ture sparse information from GPS trajectories and address noise
and redundancy in raw GPS trajectories through the hierarchical
encoding.

2.2 Route Trajectory Representation Learning
Route trajectories are obtained from GPS trajectories by map match-
ing algorithms (e.g., FMM[31]), which describe the transfer state of
moving objects. Compared to other simplified methods, route tra-
jectory can provide higher modeling accuracy because it efficiently
exploits the topology in the road network. PIM[34], Trembr[12],
and Toast[6] believe that the road network limits route trajecto-
ries and can naturally maintain spatial relationships between road
networks. In these works, route trajectories are treated as general
sequence data inputs. With the development of graph neural net-
works, ST2Vec[9], JCLRNT[25] and START[17] introduce graph
encoders on spatial modeling, further restricting the trajectory rep-
resentation space through the road network structure. In particular,
[17] is shown to integrate transfer probabilities on the road net-
work as a priori knowledge. On the other hand, recent work has
increasingly focused on capturing temporal relationships in route
trajectories. [12] first explores temporal information, capturing it by
designing the passage time loss on the road segment. [9] and [17],
inspired by the transformer, propose temporal embedding modules.
[9] focuses on modeling continuous timestamps. [17] splits time
into two parts. Discretized time signals (e.g., minute index) are used
to encode contextual information, and continuous time interval are
used to capture temporal dynamics. Compared to the previous work,
we design a unified embedding method for both types of temporal
signals, which is both computationally efficient and comprehen-
sive information. In spatial modeling, we focus on the concept of
geographic entities to capture finer-grained spatial information by
jointly modeling GPS trajectories and route trajectories.

In addition, some work has designed self-supervised tasks to
train models, mainly categorized into autoregression, contrast, and
MLM. [30] first models route trajectories using deep neural net-
works, which uses autoregressive learning by predicting the next
road segment of each token. [12] builds on this basis by designing
a multi-task framework that jointly optimizes the autoregressive
and road passage time estimation tasks. [34] and [25] design differ-
ent sampling and data augmentation strategies to provide super-
vised signals based on the contrast learning paradigm. [34] uses
course learning to control the difficulty of the samples, guiding the
model training from easy to difficult. [25] proposes a framework
for joint learning of road segments and trajectories, guiding the
model training through three types of contrastive tasks. Recently,
work combining contrastive learning and MLM for joint optimiza-
tion has been proposed, such as [6], [17]. We extended this idea by
replacing the original inter-instance comparison with CMM, since
GPS trajectories are naturally paired with route trajectories. Unlike
previous data augmentation schemes designed specifically for tra-
jectory contrastive learning, our model utilizes GPS trajectory and
route data collected by the system directly, eliminating the need
for additional computational overhead in data preparation. Finally,
we use MLM and the CMM task to provide self-supervised signals.

3 OVERVIEW
3.1 Preliminaries

Definition 1. (Trajectory) A trajectory 𝜏𝑖 represents the change
in the position of an object over time. In this paper, a trajectory is
observed from the GPS view and the route view, denoted as 𝑔𝑖 and 𝑟𝑖 ,
respectively.

Definition 2. (GPS Trajectory) GPS trajectory is a sequence
of GPS points, denoted as 𝑔𝑖 =< 𝑔𝑝1, 𝑔𝑝2, . . . , 𝑔𝑝𝑛 >, each point
𝑔𝑝𝑖 = (𝑙𝑎𝑡𝑖 , 𝑙𝑛𝑔𝑖 , 𝑡𝑖 ) containing latitude, longitude and timestamp.
𝑥𝐺𝜏𝑖 denotes the GPS view feature of trajectory 𝜏𝑖 .

Definition 3. (Road Network) A road network is denoted as a
directed graph 𝐺 = (𝑉 , 𝐸,𝐴), where 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣 |𝑉 | } is the set
of vertices, each vertex 𝑣𝑖 refers to a road segment. 𝐸 ⊆ 𝑉 ×𝑉 is the
set of directed edges, each edge 𝑒𝑖 𝑗 =< 𝑣𝑖 , 𝑣 𝑗 > refers to a intersection
between road 𝑣𝑖 and 𝑣 𝑗 . 𝐴 ∈ R |𝑉 |× |𝑉 | is a binary adjacency matrix
of the road network 𝐺 that describes whether there are directed edges
between two road segments.

Definition 4. (Route Trajectory) Route Trajectory is a chrono-
logical sequence of visited record 𝑟𝑖 =< 𝑟𝑝1, 𝑟𝑝2, . . . , 𝑟𝑝𝑚 >, with
each record 𝑟𝑝 𝑗 = (𝑣 𝑗 , 𝑡 𝑗 ) containing the road ID and the correspond-
ing timestamp. 𝑥𝑅𝜏𝑖 denotes the route view feature of trajectory 𝜏𝑖 .

3.2 Problem Statement
For a trajectory 𝜏𝑖 , given the GPS view feature 𝑥𝐺𝜏𝑖 and the route
view feature 𝑥𝑅𝜏𝑖 , our goal is to obtain a d-dimensional generalized
representation of the trajectory 𝑧𝜏𝑖 and the road segments {𝑧𝑣𝑗 , 𝑣 𝑗 ∈
𝑉𝜏𝑖 } appearing in the trajectory 𝜏𝑖 , respectively.
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Figure 2: The Framework of JGRM.

3.3 Framework Overview
The framework of JGRM is shown in Figure 2, which consists of
three modules to obtain a d-dimensional representation for each
trajectory and road segment contained therein:

• GPS Encoder, which first encodes the road segments using the
GPS sub-trajectories of the corresponding road segments, then
refines the road segment representations through the sequential
relationship between them to obtain the GPS view representa-
tions of the trajectory and the road segments contained therein.
• Route Encoder, which encodes the topological relationship be-
tween road segments and the temporal context separately, and
fuses the spatio-temporal context encoding with the road seg-
ment embeddings to obtain the road segment representations.
These road segment representations are refined using sequential
correlation, which ultimately yields the route view representa-
tions of the trajectory and the road segments in the trajectory.
• Modal Interactor, which further enhances the output represen-
tation with the interaction between two views so that an ideal
representation can be achieved by fully integrating knowledge
from road entity and trajectory information.

The whole framework is trained by the self-supervised paradigm,
which includes two types of tasks, MLM (Mask Language Model-
ing) [7] and CMM (Cross-Modal Matching) [15]. The MLM task
randomly masks some road segments before the trajectories are
fed into the GPS and Route Encoder, and eventually rebuilds these
road segments using the output of the modal interactor. The recon-
struction error is used as a supervised signal to train the model.
Note that the GPS and Route views are masked by the same road
segments, hence the term Shared Mask. The CMM task refers to
the fact that the trajectory representations of different views corre-
sponding to the same trajectory are supposed to be paired, so the
matched result of trajectory representations can be utilized to pro-
vide self-supervised signals, which are outputted by two encoders.

Overall, the model is supervised by three losses, the GPS MLM loss,
the Route MLM loss, and the GPS-Route Match loss.

4 METHODOLOGY
In this section, we first introduce three modules of JGRM in detail
and then illustrate how the self-supervised tasks help to train the
model.

4.1 GPS Encoder
The GPS encoder aims to encode the GPS trajectory to obtain the
trajectory representation and the corresponding road segment rep-
resentation in an efficient and robust manner.

Assignment Matrix Assignment Matrix Road SegmentsRoad Segments

GPS TrajectoryGPS TrajectoryGPS Trajectory

Figure 3: An example of an assignment matrix.

Main Idea.Modeling GPS trajectories as traditional sequence
data would focus too much on the endpoints of the trajectory,
making it inefficient to accommodate long trajectories. In addition,
there is noise and redundancy in the GPS trajectory that affects
the sequence model representation capability. Considering these
issues, we propose to model the road segments in the GPS trajec-
tory individually and refine these road segment representations
through sequence dependency. The reason for this is that modeling
road segments individually ensures the independence of road seg-
ments as geographic entities, regardless of trajectory length. And
sequence-based refinement can smooth the noise and redundant
signal in each road segment. A hierarchical bidirectional GRU is
designed to implement this two-stage modeling. A hierarchical
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bidirectional GRU is designed to implement this two-stage mod-
eling, which consists of intra-road BiGRU and inter-road BiGRU.
Similar to the previous presentation, intra-road BiGRU is used to
encode segment entities and inter-road BiGRU refines the segment
representation obtained from the former.

Implementation. To implement the above idea, we first use the
map-matching algorithm to obtain the correspondence between
sub-trajectories and road segments. An assignment matrix 𝐵𝜏𝑖 is
created when the raw GPS trajectory is transformed into a route
trajectory by the map matching algorithm. It describes the mapping
of raw GPS points to road segments, as shown in figure 3. The i-th
row of the assignment matrix indicates that the i-th sub-trajectory
corresponds to road segment 𝑣 .

Then, for each GPS trajectory, we first extract 7 features in each
GPS point that describe the kinematic information of the trajectory:
longitude, latitude, speed, acceleration, angle delta, time delta, and
distance. 𝑥𝐺𝜏𝑖 ∈ R

𝑛𝑖×7 indicates the feature matrix of GPS trajectory
𝜏𝑖 , where 𝑛𝑖 is the trajectory length. Before the data is fed into the
intra-road BiGRU, we need to organize the original feature matrix
𝑥𝐺𝜏𝑖 according to sub-trajectories. The records of sub-trajectories
are maintained in the assignment matrix. Each sub-trajectory is
expressed as follows:

𝐼𝑠 𝑗 , 𝑣 𝑗 = 𝐵𝜏𝑖 [ 𝑗]

𝑥𝐺𝑠 𝑗 = 𝑥𝐺𝜏𝑖

[
𝐼𝑠 𝑗

] (1)

where 𝑠 𝑗 =
{
𝑔𝑝k, gpk+1, . . . , 𝑔𝑝𝑘+𝑙 𝑗−1

}
denotes the j-th subtrajec-

tory in the assignment matrix. 𝐼𝑠 𝑗 =
[
k, k + 1, . . . , 𝑘 + 𝑙 𝑗 − 1

]
is the

set of indexes for each GPS point in the sub-trajectory 𝑠 𝑗 . 𝑣 𝑗 ∈ 𝑉𝜏𝑖
denotes the road segment and 𝑥𝐺𝑠 𝑗 is feature matrix correspond-
ing to the sub-trajectory 𝑣 𝑗 . 𝑙 𝑗 is the length of the sub-trajectory.
Next, the feature matric 𝑥𝐺𝑠 𝑗 is fed into the intra-road BiGRU to get
sub-trajectory hidden representation:

−→
ℎ𝐺𝑠 𝑗 ,
←−
ℎ𝐺𝑠 𝑗 = 𝐵𝑖𝐺𝑅𝑈𝑖𝑛𝑡𝑟𝑎 (𝑥𝐺𝑠 𝑗 ) (2)

where
−→
ℎ𝐺𝑠 𝑗 ,
←−
ℎ𝐺𝑠 𝑗 ∈ R

𝑙 𝑗×𝑑𝑖𝑛𝑡𝑟𝑎 are the forward and backward hidden
representations of the sub-trajectory, respectively. The outputs of
the intra-road BiGRU are sent to inter-road BiGRU to obtain the
compressed road segment representation using sequence informa-
tion.

−−−→
𝐻𝐺
𝑉𝜏𝑖

,
←−−−
𝐻𝐺
𝑉𝜏𝑖

= BiGRU𝑖𝑛𝑡𝑒𝑟 ( [
−→
ℎ𝐺𝑠0
(𝑙0−1) ,

−→
ℎ𝐺𝑠1
(𝑙1−1) , . . . ,

−−−−−→
ℎ𝐺𝑠𝑚𝑖 −1

(𝑙𝑚𝑖−1−1) ])
(3)

where
−−−→
𝐻𝐺
𝑉𝜏𝑖

and
←−−−
𝐻𝐺
𝑉𝜏𝑖

represent the set of all forward and back-
ward road segment representations in the GPS trajectory 𝜏𝑖 , respec-
tively.𝑚𝑖 is the number of sub-trajectories in the GPS trajectory 𝜏𝑖 .
The final road segment representation is obtained by concatenating

them, denoted by 𝑍𝐺
𝑉𝜏𝑖

= [
−−−→
𝐻𝐺
𝑉𝜏𝑖

,
←−−−
𝐻𝐺
𝑉𝜏𝑖
], 𝑍𝐺

𝑉𝜏𝑖
∈ R𝑚𝑖×2𝑑𝑖𝑛𝑡𝑒𝑟 . These

road segment representations in the GPS trajectory are all sent
to the mode interactor. And, we use a simple additive model to
compute the trajectory representation:

𝑧𝐺𝜏𝑖 = MeanPool({𝑧𝐺𝑣𝑗 , 𝑣 𝑗 ∈ 𝑉𝜏𝑖 }) (4)

where 𝑧𝐺𝜏𝑖 ∈ R
1×2𝑑inter is the representation vector of the trajec-

tory 𝜏𝑖 in GPS view.

4.2 Route Encoder
In this module, we model route trajectory from the spatial and
temporal perspectives. Eventually, road segment representations
and trajectory representations of trajectory 𝜏𝑖 are obtained in the
route view.

Main Idea. Route trajectory generation is constrained by the
topology of the road network and the current traffic situation. Ad-
jacency in the road network requires that adjacent segments are
connected in the routing trajectory. Current traffic conditions then
affect the driver’s route planning, which is reflected in the prob-
ability of choosing each road because drivers tend to favor less
congested routes. To simulate this process, we propose to first use
GAT to update the embedding of the road segment when new tra-
jectories are observed in a streaming fashion. This design ensures
that our model is updated to the road segment representation in
real time with the observed trajectory data. From the temporal
perspective, we propose to encode the time information using the
contextual time and the actual travel times of each segment in
the route trajectory. The context time describes the periodicity in
the traffic flow, while the actual elapsed time further captures the
current state of the road segment. Similarly, road segment repre-
sentations that incorporate temporal and spatial information are
finally refined based on the autocorrelation of the sequences. Given
the complex dependencies between road segments, the transformer
is the ideal choice to update road segment representations.

Implementation. We consider four types of features for en-
coding the route trajectory, including the road ID, the time delta,
the minutes index (0-1439), and the day of the week index (0-6)
of the start time. 𝑥𝑅𝜏𝑖 ∈ R

𝑚𝑖×4 denotes the route feature matrix of
the trajectory 𝜏𝑖 , where𝑚𝑖 indicates the number of road segments
contained in the route trajectory.

Based on the above, the road embedding is first updated using
the topology of the road network:

𝑅𝐸′ = 𝐺𝐴𝑇𝐿𝑎𝑦𝑒𝑟 (𝑅𝐸 (𝑉 ), 𝐴) (5)
where 𝑅𝐸 is road network embedding, which converts road IDs

into dense vectors. 𝑅𝐸′ is the road network embedding updated
with the message passing in the graph. To encode the temporal
information of the road segments, the two context times are embed-
ded as discrete values, similar to road network embedding. And the
actual travel time is embedded as a continuous value. In practice, in-
spired by the idea of binning, we maintain a conceptual embedding
containing 100 virtual buckets. When the travel time is input, it is
first transformed into a 100-dimensional vector, and the weights of
each concept bucket are obtained by softmax. As a result, the travel
time is transformed into a dense vector. This process is formulated
as follows:

𝐼𝐸 (Δ𝑡 𝑗 ) = Softmax(𝐹𝐹𝑁 (Δ𝑡 𝑗 )) ∗𝑊𝑇𝐸

ℎ𝑅𝑣𝑗 = 𝐺𝐸′ (vj) +𝑇𝐸𝑚𝑖𝑛 (𝑡 𝑗 ) +𝑇𝐸𝑤𝑒𝑒𝑘 (𝑡 𝑗 ) + 𝐼𝐸 (Δ𝑡 𝑗 )
(6)

ℎ𝑅𝑣𝑗 is the representation of the segment 𝑣 𝑗 . 𝑇𝐸𝑚𝑖𝑛 and 𝑇𝐸𝑤𝑒𝑒𝑘

are the minute embedding and day-of-week embedding of the start
time, respectively, and 𝐼𝐸 is the travel time embedding.𝑊𝑇𝐸 is a
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learnable parameter matrix. Next, the updated road segment repre-
sentations are fed into the Transformer encoder for refinement. For
simplicity, no additional positional embedding is designed because
the order is already included in the time coding.

𝐻𝑅
𝑉𝜏𝑖

= [ℎ𝑅𝑣0 , ℎ
𝑅
𝑣1 , . . . , ℎ

𝑅
𝑣𝑚𝑖 −1 ]

𝑍𝑅
𝑉𝜏𝑖

= TransEncoder(𝐹𝐹𝑁 (𝐻𝑅
𝑉𝜏𝑖
))

(7)

where 𝑍𝑅
𝑉𝜏𝑖
∈ R𝑚𝑖×𝑑𝑟𝑒𝑝 refer to the set of segment represen-

tations. At last, the average pooling is employed to obtain the
trajectory representation:

𝑧𝑅𝜏𝑖 = MeanPool({𝑧𝑅𝑣𝑗 , 𝑣 𝑗 ∈ 𝑉𝜏𝑖 }) (8)
where 𝑧𝑅𝜏𝑖 ∈ R

1×𝑑𝑟𝑒𝑝 is the representation vector of the trajectory
𝜏𝑖 in route view.

4.3 Mode Interactor
GPS trajectory and route trajectory can be treated as two obser-
vations of the same concept, similar to the two modal data. In-
spired by multimodal pre-training studies [5, 18, 39], we introduce
a shared transformer for cross-modal information interaction. For
each modality, the input token undergoes modal embedding and
positional embedding, respectively, to preserve modal identity:

𝑒 = 𝑧 +𝑀𝐸 (𝑧) + 𝑃𝐸 (𝑧) (9)
We then feed these processed road segment representations and

trajectory representations into the transfomer encoder. The data
are organized in the order of trajectory representation and road
segment representation in both modalities:

[𝑧𝐺𝜏𝑖
′
, 𝑍𝐺

𝑉𝜏𝑖

′
, 𝑧𝑅𝜏𝑖
′
, 𝑍𝑅

𝑉𝜏𝑖

′] = TransEncoder(𝐹𝐹𝑁 ( [𝑒𝐺𝜏𝑖′ , 𝐸
𝐺
𝑉𝜏𝑖

, 𝑒𝑅𝜏𝑖′ , 𝐸
𝑅
𝑉𝜏𝑖
]))

(10)
where 𝑧𝐺𝜏𝑖 and 𝑍𝐺

𝑉𝜏𝑖
denote the trajectory representations and

the set of road segment representations in the GPS view, 𝑧𝑅𝜏𝑖 and
𝑍𝑅
𝑉𝜏𝑖

and d ditto in the route view. Trajectory and road segment
representations are calculated as the mean of two types of repre-
sentations:

𝑍𝑉𝜏𝑖
= MeanPool( [𝑍𝐺

𝑉𝜏𝑖

′
, 𝑍𝑅

𝑉𝜏𝑖

′]), 𝑍𝑉𝜏𝑖 ∈ R
𝑚𝑖 × 𝑑𝑜𝑢𝑡

𝑧𝜏𝑖 = MeanPool( [𝑧𝐺𝜏𝑖
′
, 𝑧𝑅𝜏𝑖
′]), 𝑧𝜏𝑖 ∈ R1×𝑑𝑜𝑢𝑡

(11)

4.4 Self-supervised Training
In order to obtain the generalized trajectory representation, we
design two types of self-supervised tasks for training the proposed
JGRM.

MLMLoss.MLMhas been shown to performwell in self-supervised
training on sequence data [7]. However, the road segments in the
trajectory are constrained by the road network. Recovering these
randomly masked independent tokens is relatively simple and in-
sufficient to adequately train the model. To increase the difficulty
of the task, we randomly mask the subpaths of length 𝑙 with proba-
bility 𝑝 , where 𝑙 ≥ 2. To prevent the two types of trajectories from
leaking to each other, a shared mask is executed on both the GPS
trajectory and the route trajectory. Specifically, the shared mask

hides the same road segments in both types of trajectories. Our
task is to recover these segments using the corresponding token
representations output by the mode interactor. The self-supervised
task is trained by cross-entropy loss.

In practice, we first transform these token representations using
the classification head. A layer feed-forward neural network is used
as the classification head, which is different for GPS trajectory and
route trajectory:

z̃𝐺𝑣𝑗 = 𝐹𝐹𝑁𝑔𝑐𝑙𝑠 (z𝐺𝑣𝑗
′), z̃𝑅𝑣𝑗 = 𝐹𝐹𝑁𝑟𝑐𝑙𝑠 (z𝑅𝑣𝑗

′) (12)

where z̃𝐺𝑣𝑗 , z̃
𝑅
𝑣𝑗
∈ R1×|𝑉 | are the corresponding token vectors for

the GPS view and the route view. The transformed vectors are then
used to calculate the loss:

L𝐺𝑀𝐿𝑀
𝑇 = − 1

|𝑇 |
∑︁
𝜏𝑖 ∈𝑇

1
|M𝜏𝑖 |

∑︁
𝑣𝑖 ∈M

log
exp(z̃𝐺𝑣𝑖 )∑

𝑣𝑗 ∈𝑉𝜏𝑖 exp(z̃𝐺𝑣𝑗 )

L𝑅𝑀𝐿𝑀
𝑇 = − 1

|𝑇 |
∑︁
𝜏𝑖 ∈𝑇

1
|M𝜏𝑖 |

∑︁
𝑣𝑖 ∈M

log
exp(z̃𝑅𝑣𝑖 )∑

𝑣𝑗 ∈𝑉𝜏𝑖 exp(z̃𝑅𝑣𝑗 )

(13)

where 𝑇 is the set of trajectories andM is the set of masked
segments in all trajectories.M𝜏𝑖 is the set of masked segments in a
given trajectory 𝜏𝑖 .

Match Loss. The matching task is designed to guide the align-
ment of the two representation spaces, which are maintained by
two encoders. Considering that the GPS trajectory and the route
trajectory appear in pairs and can be referred from each other, we
borrow design ideas from cross-modal retrieval studies [20]. For a
trajectory set𝑇 , two types of trajectories can be retrieved from each
other to generate |𝑇 |2 match results. Each match result is a binary
classification problem that can be optimized by cross entropy loss.

First the trajectory representations of the two encoder outputs
are fed into the corresponding projection head for transformation.

𝑧𝐺𝜏𝑖 = 𝐹𝐹𝑁𝑝𝑜𝑟 𝑗1 (𝑧𝐺𝜏𝑖 ), 𝑧
𝑅
𝜏𝑖

= 𝐹𝐹𝑁𝑝𝑜𝑟 𝑗2 (𝑧𝑅𝜏𝑖 ) (14)

𝑧𝐺𝜏𝑖 , 𝑧
𝑅
𝜏𝑖
∈ R1×𝑑𝑝𝑟𝑜 𝑗 are the vectors obtained after projection. We

use a single fully-connected layer to discriminate the results of a
single retrieval:

𝑦𝐺𝑅 = 𝐹𝐹𝑁𝑝𝑐𝑙𝑠 ( [𝑧𝐺𝜏𝑖 , 𝑧
𝑅
𝜏𝑖
]) (15)

where 𝑧𝐺𝜏𝑖 and 𝑧
𝑅
𝜏𝑖
are the trajectory representations of the two

encoder outputs. 𝑦𝐺𝑅 is the predict result. In practice, to overcome
sparse supervision and computational efficiency, we replace the
above loss with a simpler form. For each pair, only 3 loss terms are
considered, which are the match results of the two corresponding
positive samples, the positive GPS sample and the negative route
sample, and the negative GPS sample and the positive route sample.
This design based on triplet loss can effectively improve training
efficiency. Note thatWe use only the one thatmost closely resembles
the current query trajectory as the negative sample in each retrieval.
The formula is the following:
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LMatch
𝑇

=
1
3
[𝐶𝐸 (𝑦𝐺𝑅, 𝑦𝐺𝑅) +𝐶𝐸 (𝑦𝐺𝑅, 𝑦𝐺𝑅) +𝐶𝐸 (𝑦𝐺𝑅, 𝑦𝐺𝑅]

𝐶𝐸 (𝑦,𝑦) = − 1
|𝑇 |

∑︁
𝜏𝑖 ∈𝑇

𝑦𝜏𝑖 log(𝑦𝜏𝑖 )

(16)
where𝐺 and 𝑅 denote negative samples at GPS view and route

view. 𝑦𝐺𝑅 ,𝑦𝐺𝑅 and 𝑦𝐺𝑅 are 1,0,0, respectively. The overall loss is
defined as:

L𝑇 = 𝑤1L𝐺𝑀𝐿𝑀
𝑇 +w2L𝑅𝑀𝐿𝑀

𝑇 +w3L𝑀𝑎𝑡𝑐ℎ
𝑇 (17)

where 𝑤1, 𝑤2, and 𝑤3 are the hyperparameters to balance the
three tasks.

5 EXPERIMENTS
5.1 Experimental Settings
In this section, we evaluate the performance of JGRM on a series of
experiments in two real-world datasets, which are summarized to
answer the following questions:
• RQ1: How does JGRM’s performance compare to other compari-
son methods on four downstream tasks?
• RQ2: How does every module that we design contribute to the
model performance?
• RQ3: How effective are our pre-trained models?
• RQ4: How does our pre-trained model transfer across different
cities?
Dataset Description. We evaluate our approach in two real-

world datasets, which are Chengdu and Xi’an. Each of these includes
GPS trajectories, route trajectories, and road networks. GPS trajec-
tories are obtained from public datasets released by Didi Chuxing 1.
Corresponding road networks are collected from OSMNX [3]. The
road network data includes the road type, road length, number of
lanes, and topological relationships. We use only the topological re-
lationships of the road segments during training, which is different
from some baselines. The raw GPS trajectories are mapped into the
road network using the map matching algorithm [32] to obtain the
route trajectories and assignment matrix. The assignment matrix
indicates the mapping of GPS sub-trajectories to road segments. To
be fair, we filtered out the road segments that were not covered
by trajectories. Similarly, we remove trajectories with fewer than
10 road segments, which would affect model performance. Both
datasets have the same time span, which is 15 days. We divide the
data from the first 13 days as the training set, the 14th day as the
validation set, and the 15th day as the testing set. The details of
each dataset are summarized in Table 3.

Downstream Tasks and Metrics. We use similar experimental
settings in [6, 25]. A total of four tasks were used to evaluate the
model performance, including two segment-level tasks and two
trajectory-level tasks. Segment-level tasks consist of road classifica-
tion and road speed estimation, where the former is a classification
task and the latter is a regression task. They are used to evaluate the
characterization capabilities of road segment representations across
tasks with different granularity. In these tasks, the representations
of the same road segments in different trajectories are averaged as
1https://outreach.didichuxing.com/

static representations, that is the input data. The trajectory-level
tasks include travel time estimation and top-k similarity trajectory
query, which evaluate trajectory representations at different seman-
tic levels. The travel time estimation stands for the shallow-order
semantics of trajectory and is related to the spatio-temporal context
and the current traffic state. Top-k similar trajectory query is more
related to OD (Origin-Destination) pair and driving preferences
and belongs to higher-order semantics.

Note that we fixed the model parameters and only trained clas-
sification or regression heads during the evaluation. In the top-k
trajectory similarity query task, we directly use the raw output
of the model as trajectory representations without finetune. The
experimental setup for these four tasks is shown in the Appendix.

5.2 Performance Comparison (RQ1)
We compare our proposed JGRMwith the following 10methods that
are categorized into 4 groups. To be fair, all of the above methods
were trained to use 10w trajectories.
Random Initialization.

• Embedding: The road segment representation is randomly ini-
tialized.

Graph-based Trajectory Representation Learning.

• Word2vec[26]: It use the skip-gram model to obtain the road
segment representation based on co-occurrence.
• Node2vec[13]: It efficiently learns embeddings for nodes in a
network by sequences generated by random walks.
• GAE:[19]: It is a classical graph encoder-decoder model that
learns the node embedding by reconstructing the adjacency ma-
trix.

The trajectory representation of such methods is given by the
average of the road segment representation.
GPS-based Trajectory Representation Learning.

• Traj2vec[38]: It converts raw GPS trajectory into feature se-
quence and adopts seq2seq model to learn the trajectory repre-
sentation.

Route-based Trajectory Representation Learning.

• Toast[6]: Built upon the Skip-gram pretraining result for node
embeddings, and uses them on the MLM task and trajectory
discrimination task to train the model.
• PIM[34]: It employs contrastive learning on the samples gener-
ated by the shortest path, and their variations by swapping the
nodes between positive and negative paths for road networks.
• Trember[12]: It first transforms trajectory into spatio-temporal
sequences, then passes through RNN-based Traj2vec to obtain
the trajectory representation.
• START[17]: The authors propose a trajectory encoder that inte-
grates travel semantics with temporal continuity and two self-
supervised tasks.
• JCRLNT:[25]: JCLRNT develops a graph encoder and a trajec-
tory encoder to model the representation of road segment and
trajectory, respectively. These representations were organized to
train the model through three comparison tasks.
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Table 1: Model comparison on four downstream tasks in Chengdu.

Road Classification Road Speed Inference Travel Time Estimation Top-k Similar Trajectory Query
Mi-F1 Ma-F1 MAE RMSE MAE RMSE MR HR@10 No Hit

Embedding 0.3853 0.2757 3.561 4.6437 102.592 132.4559 9.4693 0.85 0
Word2vec 0.5514 0.5137 3.5004 4.5424 87.1612‡ 115.6605‡ 12.4355 0.7998 0
Node2vec 0.408 0.364 3.5761 4.6623 88.1243 117.3834 4.103† 0.9127† 0

GAE 0.4373 0.3805 3.287‡ 4.2134‡ 90.2352 122.9764 4.4584‡ 0.9067‡ 0
Traj2vec 0.4828 0.399 2.856† 3.81† 99.0706 128.4441 67.5899 0.55 839.2
Toast 0.6276† 0.6195† 3.3201 4.3777 86.0053† 114.2109† 5.9169 0.8696 0
PIM 0.4618 0.4457 3.4841 4.5737 87.6526 116.533 5.109 0.8902 0

Trember 0.611‡ 0.6059‡ 3.3955 4.447 90.9035 119.0926 17.9627 0.7427 0.1
START 0.409 0.3366 3.5269 4.6084 89.7182 117.9891 6.9448 0.909 30.7
JCRLNT 0.5169 0.466 3.441 4.5016 100.1113 129.591 20.0152 0.7323 0.6
JGRM 0.7198 0.7228 2.5783 3.5452 83.3306 110.7224 2.2111 0.9492 0
JGRM∗ 0.8067∗ 0.8111∗ 2.3162∗ 3.2953∗ 80.4002∗ 108.0134∗ 1.1363∗ 0.9735∗ 0

improvement 14.69% 16.67% 10.77% 7.47% 3.21% 3.15% 85.56% 4% /
improvement∗ 28.54% 30.93% 23.31% 15.62% 6.97% 5.74% 261.08% 6.66% /

Table 2: Ablation experiment on four downstream tasks in Chengdu.

Road Classification Road Speed Inference Travel Time Estimation Top-k Similar Trajectory Query
Mi-F1 Ma-F1 MAE RMSE MAE RMSE MR HR@10 No Hit

JGRM 0.7198 0.7228 2.5783 3.5452 83.3306 110.7224 2.2111 0.9492 0
w/o MLM Loss 0.5233 0.4804 3.4752 4.5521 122.7088 152.9668 26.4418 0.0085 4725.8
w/o Match Loss 0.7178 0.7232 ↑ 2.6075 3.5947 82.5453 ↑ 110.2262 ↑ 2.3396 0.9441 0
w/o GPS Branch 0.6245 0.6206 3.2008 4.2258 83.6647 111.4075 1.6037 ↑ 0.963 ↑ 0
w/o Route Branch 0.6122 0.5929 2.8302 3.7668 95.2015 124.4988 9.2601 0.8381 0
w/o Time Info 0.7331 ↑ 0.7361 ↑ 2.6225 3.5866 84.1749 111.6983 5.6927 0.8745 0

w/o Mode Interactor 0.6043 0.5859 2.7381 3.7303 82.9407 ↑ 110.4866 ↑ 1.4601 ↑ 0.965 ↑ 0
w/o GAT 0.7173 0.7225 2.706 3.654 82.2657 ↑ 110.038 ↑ 1.1554 ↑ 0.9732 ↑ 0

w/o Mode Emb 0.7161 0.7222 2.7439 3.6944 83.8222 111.5119 2.535 0.9417 0

Tables 1 and 4 show the comparison results of all methods. We
run all models with 5 different seeds and report the average per-
formance. As can be observed, our JGRM achieved the best perfor-
mance on all four downstream tasks for both real-world datasets.
This demonstrates the effectiveness of JGRM in jointly modeling
the GPS trajectory and route trajectory in a self-supervised manner.
Also, for each task, we labeled the second and third-best methods
(† and ‡). JGRM obtained significant performance improvements
in almost all metrics. In addition, we developed a larger version
denoted as JGRM∗ trained using 50w trajectories, which achieves
better performance.

Compared to other methods, our method performs much better
than other baselines on the road segment level task. It suggests that
effective modeling of road segments can significantly improve the
performance of trajectory representation learning. Sequencemodels
such as Toast, PIM, and Trember tend to perform better performance
in trajectory-level tasks, indicating that modeling spatio-temporal
correlation in trajectory is necessary. Among them, the GPS-based
representation learning method traj2vec performs poorly, which is
due to the fact that it ignores the noise and redundancy in the GPS
trajectory. Interestingly, the graph-based trajectory representation

learning approach achieved unexpected results on the sequence-
level task. This suggests that the topology between road segments
is important for trajectory representation. Note that we did not
use road attributes during training because it is very expensive to
collect data accurately. It causes START to produce a significant
performance degradation.

5.3 Ablation Study (RQ2)
To evaluate the effects of each module in JGRM, we performed ab-
lation experiments on 8 variants: (1) w/o MLM Loss: This variant
leaves the model structure unchanged and removes twoMLM losses.
(2) w/o Match Loss: Similar to the previous one, which only re-
moves the Match loss. (3) w/o GPS Branch: This variant removes
the GPS encoder and modal interactor and their corresponding
loss functions, keeping only the route MLM loss. (4) w/o Route
Branch: This variant is similar to the one above, only retains the
GPS encoder and GPS MLM loss. (5) w/o Time Info: This variant
masks the input temporal information. (6) w/o Mode Interactor:
This variant only removes mode interactor. Two MLM losses are
calculated using the outputs of encoders in this case. (7) w/o GAT:
Remove the GAT from the model, and leave the others as they are.
(8)w/oMode Emb:This variant only remove the modal embedding.
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The results of the ablation experiments in Chengdu are shown in
Table 5. Due to space limitations, the Xi’an results are included in
the appendix. We can observe that the overall performance of our
method beats all variants. On part tasks, the variants outperform
our approach, marked for 𝑢𝑝𝑎𝑟𝑟𝑜𝑤 . It shows that different modules
focus differently on different types of tasks, our JGRM is a trade-off.
MLM achieves the best performance improvement among all vari-
ants, indicating the effectiveness of the improved self-supervised
task. Joint modeling also yielded significant improvements over
methods that used only one type of trajectory modeling. Other
modules work well for specific types of tasks. The combination of
these modules can be customized to meet specific needs.

6 CONCLUSION
In this work, we design a framework that learns a robust road
segment representation and trajectory representation by jointly
modeling GPS traces and routing traces. Specifically, we have pro-
posed corresponding encoders for each of the two trajectory char-
acteristics. The GPS encoder uses hierarchical modeling to mitigate
noise and redundancy from the GPS trajectory. The route encoder
embedded with spatio-temporal information encodes route trajec-
tory with the autocorrelation of sequence. The outputs of the two
encoders are fed into the modal interactor for information fusion.
Finally, two self-supervised tasks were designed to optimize the
model parameters, which are MLM and Match. Extensive experi-
ments on two real-world datasets demonstrated the superiority of
JGRM. In the future, we will further explore the JGRM framework
for dynamic road segment representation to sense the road state in
real time.
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7 APPENDICES
7.1 Datasets.

Table 3: Details of the Datasets

Datasets Chengdu Xi’an
Region Sizes (𝑘𝑚2) 68.26 65.62

# Nodes 6450 4996
# Edges 16398 11864

# Trajectories 2140129 1289037
Avg. Trajectory Length (𝑚) 2857.81 2976.52

Avg. Road Travel Speed (𝑚/𝑠) 11.35 9.65
Avg. Trajectory Travel Time (𝑠) 436.12 516.24

Time span 2018/11/01 - 2018/11/15

7.2 Experimental settings.
A. Details of downstream tasks.
• Road Classification: The task distinguishes the types of road
segments, similar to node classification in graph mining. In prac-
tice, we choose the four most frequently occurring labels (e.g.,
primary, secondary, tertiary and residential) to evaluate the seg-
ment representations, which are sourced from the road network.
These labels are used to train classification head that have one
linear layer and Softmax activation function. Due to the limited
road segment, we use 100-fold cross-validation for the evaluation,
setting same as [25]. Classification accuracy was measured using
Mi-F1 (Micro-F1) and Ma-F1(Macro-F1).
• Road Speed Inference: The task is to estimate the average
speed for each road segment, which is a regression problem. The
predicted targets are computed from GPS trajectories. Since the
average speed distribution is bimodal, we transform the label
using the normal distribution transformation. Specifically, the
road segment representations are fed into a linear regression
head for inference, which outputs the predicted results. Then, the
final results are produced by inverse transforming the predicted
results. In this task, MAE (Mean Absolute Error) and RMSE (Root
Mean Squared Error) are used to evaluate the model performance
in 5-fold cross-validation.
• Travel Time Estimation: The task takes the route trajectories
as input and outputs the regression values to estimate the travel
time. To avoid information leakage, we only use route trajectories
and route encoder to get the trajectory representations. And the
time information in the route trajectory is masked. Given the
complexity of the task, we use the multilayer perceptron as the
regression head. The activation function is ReLU. Ground truth
is normalized during training and inverted during testing. We
used MAE (Mean Absolute Error) and RMSE (Root Mean Squared
Error) as metrics to evaluate model performance with 5-fold
cross-validation.
• Top-k Similar Trajectory Query: The task aims to find the
trajectory in the database that is most similar to the query trajec-
tory. In preparation, we randomly selected 50k trajectories from
the test set as the database. Among them, we randomly selected
5k trajectories as query trajectories. We use the detour strategy
to augment the query trajectories to obtain the corresponding
key trajectories. The main idea of detour is to ensure that the

origin and destination of a route trajectory remain unchanged,
and replace the sub-trajectory with another available route de-
viating from the original one. In this paper, our detour rate is
17.58%. The details of the detour strategy are added in the Appen-
dix. MR (Mean Rank), HR@10 (Hit Ratio@10), and No hit were
employed to evaluate the model performance. Among them, MR
refers to the average rank of the key trajectory in the returned
query results. To minimize the effect of noise, we keep only the
first 1k results of each query to calculate this metric. HR@10
is the recall of key trajectories in the top 10 query results. And
no hit is the number of key trajectories that do not appear in
the top 10 query results. Computational details reference [17].
Since the detour strategy cannot generate GPS trajectories, the
trajectory representations in task 4 use only route trajectory and
route encoder.

B. Detour Strategy in Top-k Similar Trajectory Query.
For each selected query trajectory, we randomly select a subpath

of the route. The length of the subpath is 𝑟% of the total length
of the route. We extract the beginning and ending segments of
the subpath as the origin and destination to perform the reachable
route search algorithm on the road network. The generated routes
must satisfy that the area enclosed by the new and original routes
is greater than the threshold 𝜆1. And the routes must not be longer
than 1/3 of the query trajectory. This is done to avoid generating
trivial solutions.

7.3 Additional Experiments.

A. Model Comparison in Xi’an.
Similar to result in Chengdu, The experimental results of Xian

are shown in Table 4, where the proposed JGRM method performs
best on eight metrics on four downstream tasks.

B. Ablation Experiments in Xi’an.
Table 5 shows the results of Xi’an’s ablation experiments. The

conclusion is the same as in Chengdu. It can be seen that the pro-
posed JGRM has the best overall performance compared to other
variants. Some of the variants will show better performance on
some specific tasks.

C. Pre-training Effect Study. (RQ3) To explore the pre-training
effects of the model, we report the travel time estimation results
in both the re-training (No Pre-train) and the regression head fine-
tuning (Pre-train). The results are presented in Figure 4. The pre-
trained model shows different gains in the experiments of the two
cities. Figure 4 shows that the pre-trained model has rich prior
knowledge and can significantly reduce the amount of data re-
quired to train the model. Xian’s experimental results show that
the pre-trained model has the ability to prevent overfitting and can
continuously improve the model performance with the increase of
training data.

In Figure 5, we report the results of models trained on datasets
of different sizes for road segment speed inference and similar tra-
jectory query. The model shows better performance as the data size
increases. We find that our proposed JGRM has a large model capac-
ity that performance can be continuously improved with training.
It further demonstrates the potential of JGRM as a large model for
transportation infrastructure.
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Table 4: Model comparison on four downstream tasks in Xi’an.

Road Classification Road Speed Inference Travel Time Estimation Top-k Similar Trajectory Query
Mi-F1 Ma-F1 MAE RMSE MAE RMSE MR HR@10 No Hit

Embedding 0.4382 0.3003 3.2619 4.1949 104.5929 137.0655 4.0946 0.9031 0
Word2vec 0.5962 0.5559 3.2242 4.1103 92.9827 129.9678 5.795 0.8617 0
Node2vec 0.4283 0.3827 3.2945 4.236 89.6014† 122.2406† 3.1167‡ 0.923‡ 0

GAE 0.462 0.436 3.2496 4.1794 90.2352‡ 122.9764‡ 3.5626 0.9141 0
Traj2vec 0.5658 0.4195 2.7798† 3.6768† 107.8969 144.248 51.6097 0.6221 361.5
Toast 0.7055† 0.6606† 3.1145 4.0025 92.9093 129.3365 5.0072 0.869 0
PIM 0.512 0.4671 3.2367 4.1845 91.0666 123.6043 4.243 0.8947 0

Trember 0.6627‡ 0.6212‡ 3.2052 4.1269 98.8188 134.7582 9.5947 0.8084 0
START 0.4557 0.3298 3.2211 4.1331 105.8333 138.6432 2.5158 0.9283† 6.7
JCRLNT 0.609 0.5179 3.1651‡ 4.0864‡ 100.8771 133.8522 13.4306 0.7659 0
JGRM 0.7823 0.7703 2.6494 3.5818 87.166 119.2541 2.7714† 0.9294 0
JGRM∗ 0.8758∗ 0.8698∗ 2.2029∗ 3.1765∗ 86.2855∗ 118.9211∗ 1.2983∗ 0.9682∗ 0

improvement 10.89% 16.61% 4.92% 2.65% 2.79% 2.5% / 0.12% /
improvement∗ 24.14% 31.67% 26.19% 15.75% 3.84% 2.79% 93.78% 4.3% /

Table 5: Ablation experiment on four downstream tasks in Xi’an.

Road Classification Road Speed Inference Travel Time Estimation Top-k Similar Trajectory Query
Mi-F1 Ma-F1 MAE RMSE MAE RMSE MR HR@10 No Hit

JGRM 0.7823 0.7703 2.6494 3.5818 87.166 119.2541 2.7714 0.9294 0
w/o MLM Loss 0.5327 0.4128 3.2402 4.1623 115.9861 148.8677 75.0366 0.0768 3855.2
w/o Match Loss 0.7793 0.7666 2.5667 ↑ 3.5338 ↑ 87.3213 119.262 2.7729 0.9319 0
w/o GPS Branch 0.7003 0.6869 2.7983 3.7388 87.1901 119.3732 2.2322 ↑ 0.9441 ↑ 0
w/o Route Branch 0.6248 0.5717 2.7472 3.5753 98.0748 131.2151 5.7801 0.8663 0
w/o Time Info 0.7745 0.7601 2.5816 ↑ 3.5254 ↑ 87.5762 119.8214 5.65 0.8655 0

w/o Mode Interactor 0.6268 0.5757 2.8074 3.7472 87.2887 119.3806 2.0412 0.9492 ↑ 0
w/o GAT 0.7987 ↑ 0.7846 ↑ 2.6676 3.5982 87.2087 118.8381 ↑ 1.7644 ↑ 0.956 ↑ 0

w/o Mode Emb 0.7802 0.7691 2.4292 ↑ 3.3746 ↑ 87.0462 ↑ 118.757 ↑ 3.1417 0.9245 0

2.4 2.6 2.8 3.0
MAE

3.2

3.4

3.6

3.8

4.0

RM
SE

chengdu-5w
chengdu-10w
chengdu-15w
chengdu-20w
xian-5w
xian-10w
xian-15w
xian-20w

(a) Speed Inference.

1.5 2.0 2.5 3.0 3.5
MR

0.91

0.92

0.93

0.94

0.95

0.96

HR
@

10

chengdu-5w
chengdu-10w
chengdu-15w
chengdu-20w
xian-5w
xian-10w
xian-15w
xian-20w

(b) Similar Trajectory Search.

Figure 5: Model Capacity.

Table 6: Model transferability across two citys.

Road Classification Travel Time Estimation
Mi-F1 Ma-F1 MAE RMSE

Zero Shot
Adaptation

C→X 0.7252 0.6873 109.206 141.6533
X→C 0.7295 0.6916 106.5079 139.2584

Few Shot
Finetune

C→X 0.6712 0.6662 105.2994 134.9308
X→C 0.6802 0.6779 99.1057 128.7578

C and X in the table are abbreviations for Chengdu and Xi’an.

10k 20k 30k 40k 50k
Training Data Size.

90

100

110

120

130

M
AE

No Pre-tain
Pre-train

(a) MAE in Chengdu.

10k 20k 30k 40k 50k
Training Data Size.

86.0

86.5

87.0

87.5

88.0

88.5

89.0

M
AE

No Pre-tain
Pre-train

(b) MAE in Xi’an.

Figure 4: Effect of pre-training in travel time estimation.

D. Model Transferability Study. (RQ4)
In Table 6, we present the experiment results results applied

to cross-city scenarios to evaluate the model’s migratability. Two
types of experiments are considered. Zero-shot adaptation refers to
using model parameters trained in source city to be directly applied
in target city. Few-shot fine-tuning involves using a small amount
of data from target city to fine-tune the model trained in source
city. In both settings, the road network embedding is randomly
initialized on the target city.
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Figure 8: Different # of Mode Interact Layers.

Experimental results show that JGRM performs well on section-
level tasks, achieving 90% performance of models trained directly on
the target city. However, performance on trajectory level tasks are
poor. The transferability of the trajectory representation is limited
by the fact that people in different cities have different driving habits.
The performance in trajectory level tasks were improved as they
were fine-tuned on target city. At the same time, the performance
of the section-level task deteriorates, which may be due to the fact
that only a small number of road segments were observed in the
limited data. These road segment representations are updated by the
observed data; they are dynamic representations at a given moment
in time, rather than the static representations we would expect. We
believe that JGRM can achieve more consistent performance as the
training data on the target city is collected.

E. Parameter Sensitivity.
We further conduct the parameter sensitivity analysis for critical

hyperparameters, including embedding size 𝑑 , route encoder layers
𝐿1, mode interact layers 𝐿2, the length 𝑙 and probability 𝑝 of mask.
The encoding size experiments are shown in Figure 6, and the results
show that the larger the encoding size, the better the performance.
The best results occur at an encoding size of 1024, suggesting that
there are complex patterns in the trajectory that need to be carried
by a higher dimensional representation space.
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Figure 6: Different # of Embedding Sizes.
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Figure 7: Different # of Route Layers.

Figure 7 illustrates the parameter sensitivity of the route encoder.
The results show that this parameter performs differently in dif-
ferent cities, but overall the best results are obtained with a value
of 2. This may be due to the different complexity of trajectories in
different cities. The experimental results of the modal interactors
are shown in Figure 8. Modal interactor with 2 layers performs is
best.

Finally, we compared different combinations of mask length
and mask probability on the Chengdu dataset. Overall, the model
performs best when about 40% of the trajectory is masked. And,
it turns out that the longer mask length improves the model’s
performance on trajectory-level tasks when the same number of
tokens is used for the mask.
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Figure 9: Different # of Mask Settings.

F. Qualitative Study in Mode Interactors.
We examined the qualitative results of eachmodule for represent-

ing road segments and trajectories, and the results are presented in
Figure 10 and Figure 11. Random representations, GPS trajectory-
based representations, route trajectory-based representations, and
fused representations are reported. For the road segment represen-
tation, four main categories of roads are shown. It is noted that both
the GPS trajectory and the route trajectory are able to efficiently
model road segments, and the mode interactor fuses information
from both to further improve the representation.

For the trajectory representation, we randomly selected five
trajectories that are not similar to each other from the Chengdu
dataset as query trajectories. For each query trajectory, we find the
top 20 similar trajectories from the dataset, and these trajectory
representations are shown in Figure ??. The two encoders are able
to encode trajectories efficiently and that mode interactor are useful
in aligning the representation space of trajectories

G. Case Study.
We randomly select three trajectories from the Chengdu dataset

and use our JGRM and suboptimal Node2vec to obtain trajectory
representations for the top-k similar trajectory query, respectively.
The results are shown in Figure 12, where the three columns rep-
resent the top-1, top-3, and top-10 results, respectively, with the
odd-numbered rows referring to the results of JGRM and the even-
numbered rows referring to the results of Node2vec. Red indicates
the query trajectory, green indicates the key trajectory, and blue
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Figure 10: Road Segment Representation Space.
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(b) GPS view.
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(c) Route view.
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Figure 11: Trajectory Representation Space.

indicates the query results. The results show that while the graph
embedding-based approach is sensitive to changes in road seg-
ments, it is unable to capture sequential, temporal, and kinematic
information. This means that Node2vec can’t distinguish between
two trajectories that are opposite to each other, nor can it distin-
guish between trajectories of different users at different times under
the same OD. In contrast, our method is more sensitive to detour
behavior and is able to capture subtle changes in trajectories.

Figure 12: Case Study in Chengdu.
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