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Abstract

Recent years have seen increasing concerns about the private inference of NLP
services and Transformer models. However, existing two-party privacy-preserving
methods solely consider NLU scenarios, while the private inference of text genera-
tion such as translation, dialogue, and code completion remains unsolved. Besides,
while migrated to NLG models, existing privacy-preserving methods perform
poorly in terms of inference speed, and suffer from the convergence problem dur-
ing the training stage. To address these issues, we propose MERGE, a fast private
text generation framework for Transformer-based language models. Specifically,
MERGE reuse the output hidden state as the word embedding to bypass the embed-
ding computation, and reorganize the linear operations in the Transformer module
to accelerate the forward procedure. Based on these two optimizations, extensive
experiments show that MERGE can achieve a 26.5x speedup under the sequence
length 512, and reduce 80% communication bytes, with an up to 10x speedup to
existing state-of-art models.

1 Introduction

Recently, pre-trained language models (PLMs) based on Transformer Vaswani et al. [2017] have
attracted significant attention because of their exceptional performance in downstream tasks. However,
the deployment of such PLM-based services in real-world situations raises concerns about privacy.
For example, existing NLP services like Copilot1 and ChatGPT2 require users to send their text
queries to servers, where the information contained, such as source code, the medical information,
and personal preferences, may be sensitive to users.

To alleviate the privacy problem, some of the recent works Hao et al. [2022], Chen et al. [2022] have
developed 2-party secure inference services for PLMs by secure Multi-Party Computation (MPC).
MPC ensures privacy by encrypting user data and model weights and sharing them secretly. However,
PLMs inference under MPC is considerably slow compared to the plain-text version, which limits its
application in real-world services. To address this issue, some works have attempted to simplify the
bottleneck operation such as activation functions and softmax in the Transformer model. For instance,
Mishra et al. [2020] uses Neural Architecture Search (NAS) to replace the activation functions with
linear layers, while Li et al. [2022] approximates the exponential operation with polynomial functions.

Though designed for Transformer, these works Hao et al. [2022], Chen et al. [2022], Li et al. [2022]
solely explore the scenario of NLU inference (e.g. GLUE Wang et al. [2019]), and our experiments
suggest that they have no significant improvements in text generation tasks (Figure 1). For example,
the existing framework MPCformer Li et al. [2022] achieves XXXx speedup to BERT-base but only

1https://github.com/features/copilot
2https://chat.openai.com
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Figure 1: Inference Time Comparison among NLU and NLG models.

XXXXx for GPT-2 in text generation. By illustrating the inference bottleneck of NLU and NLG
inference procedure, our experiments show that auto-regressive generation suffers from extra time
cost in embedding table query and token sampling (i.e. GenTime), which slows down the whole
inference procedure heavily.

In this paper, we explore to accelerate the generation procedure of language models. To this end,
we propose MERGE3, a fast and easy-to-adopt framework for private text generation. MERGE is
compatible with previous MPC-based works (e.g. MPCformer, THE-X, and IRON) and mainstream
PLMs (e.g. GPT-2 Radford et al. [2019], T5 Raffel et al. [2020], and Bart Lewis et al. [2020]).
In MERGE, we first put forward a strategy called embedding resending, which directly uses the
output hidden state as the new input token embedding. Embedding resending helps to bypass the
embedding table query operation and decouple the computation between forward representation
learning and next token sampling. Besides, following the recent research Hassid et al. [2022] in
attention mechanism, we approximate self-attention with constant attention matrices and merge
tensor computations in the Transformer module before inference. These two methods are challenging
because: 1) PLMs are usually sensitive to input embeddings, while there are some unavoidable errors
in the generated embeddings; 2) constant attention in our merge module might hurt the performance
of PLMs. To address these issues, we first propose an embedding alignment and augmentation
task to enhance the robustness of PLMs to input embeddings. Besides, we employed a weighted
distillation training task for approximation models, which allowed us to overcome the negative effects
of constant attention. Our empirical experiments on popular text generation tasks such as E2E Dusek
et al. [2018], Multiwoz 2.1 Eric et al. [2020], and DailyDialog Li et al. [2017] demonstrate the
effectiveness of MERGE. Specifically, it can achieve a considerable speedup of 7.75x to GPT-2 and
10.89x to T5 under the sequence length 128, while maintaining an acceptable performance with
losses in BERTscore Zhang et al. [2020], BARTscore Yuan et al. [2021], and Rouge-L Lin [2004] of
only 0.02 (under 0.92), 0.14 (under -2.90), and 0.03 (under 0.44), respectively.

2 Related Work

Secure Multi-Party Computation. The goal of MPC is to enable private computations among
multiple parties. In general, an MPC system may employ various secure techniques, including garbled
circuits Yao [1986], Goldreich et al. [2019], fully homomorphic encryption (FHE) Gentry [2009], and
homomorphic secret sharing (HSS) Boyle et al. [2016]. Thanks to the rich support of existing MPC
methods, it is practicable to implement the private inference of Transformer models. Therefore, rather
than building a new MPC system, this paper focuses on accelerating the private generation procedure
for Transformer-based language models. As a result, our method MERGE can provide much faster
text generation which will offer significant benefits to existing mainstream MPC implementations.
We detail the MPC system used in this paper in Appendix A.

MPC-oriented Approximations. Although existing MPC techniques can provide secure inference for
neural networks, they usually suffer from prohibitively high communication delays and computation
costs. This is primarily due to the critical nonlinear operations within neural networks. Therefore,
some works aim to approximate these bottleneck operations in neural networks. For instance,
Chen et al. [2022] replaces the GeLU activation function in the Transformer with ReLU, and

3MPC-based Embedding Resending GEneration with layer MERGE
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Hao et al. [2022] reformulate the Tanh(·) function in GeLU based on optimized exponential
operations. Besides, Mishra et al. [2020] approximates the ReLU function with linear layers,
and thus it can replace the MPC method used for ReLU, i.e. the garbled circuits, with secret
sharing and Beaver triples. Similarly, Li et al. [2022] approximates GeLU with ReLU and quadratic
functions. For the softmax operation in the attention mechanism, Li et al. [2022] approximates it
by softmax(x) ≈ ReLU(x)∑

ReLU(x) or softmax(x) ≈ (x+c)2∑
(x+c)2 . However, these approximations were

designed for the “one-time” inference such as NLU models (e.g. BERT), and are not optimized
for auto-regressive generative models (e.g. GPT-series) that execute the forward inference multiple
times.

3 Preliminary

3.1 Text Generation with Language Models

The text generation task (e.g. dialogue) aims to generate the desired sequence y (e.g. the response of
the chatbot) under the given prefix text p (e.g. the dialogue context) with the language model pθ(y|p).
Typically, existing language models usually generate y in an auto-regressive manner, i.e.

p(y|p) =
∏
t=1

p(xy
t |p, x

y
<t), (1)

where the xy
t denotes the t-th generated token of y, and xy

<t denotes the generated sequence of y at
step t.

In Equation 1, if we denote the one-hot representation of (p, xy
<t) as xt with text length Nt, then the

generation procedure can be divided into the following three stages:

a) Embedding table query, i.e. Et = fe(xt), where fe(x) : RNt×V → RNt×d is the embedding
layer that maps the V -length index representation into a d-dimension semantic space;

b) Representation learning, i.e. hnl
t = ftr(E′

t), where ftr : RNt×d → RNt×d is a nl-layer
transformer model, hnl

t is the output hidden state, and E′
t is the combination of positional embeddings,

token embeddings Et, and others.

c) Next token sampling, i.e. xy
t ∼ fcls(hnl

t )[Nt], where fcls(hnl
t ) : RNt×d → RNt×V is the linear

head, fcls(hnl
t )[Nt] denote the Nt-th item of fcls(hnl

t ), and ∼ denotes the sampling strategy (e.g.
greedy search) in a generation.

3.2 Transformer Module

In Section 3.1 b) the Transformer model ftr can be seen as a stack of transformer modules. Specifically,
each transformer module fn

tr : RNt×d → RNt×d consists of following three components:

a) Projection, i.e. Qn,Kn,Vn = WT
Qnhn−1,WT

Knhn−1,WT
V nhn−1, where WQn ,WKn ,WV n ∈

Rd×(d/Nh)×Nh are Nh-head projection matrices. Particularly, h0 = E′
t.

b) Attention4, i.e. xn
att = fln(fdr(W

T
dn ·(Concat(An·Vn))+bdn)+hn−1), where An ∈ RNh×Nt×Nt

is the Nh-head attention matrix that can be calculated by A = fdr(softmax(Qn · KnT /
√
dk)),

dk = d/Nh, Wdn ∈ Rd×d is the weight matrix, bdn ∈ Rd is the bias, fdr denotes the dropout
operation Srivastava et al. [2014], and fln is the layer normalization Ba et al. [2016] layer.

flyn(x) =
x − E[x]√
V ar[x] + ϵ

⊙ γ + β, (2)

in which ϵ is a tiny number, ⊙ denotes the element-wise product, and E[x] and V ar[x] denote the
mean and variance of x, respectively.

4Noted that there are some slight differences for cross attention, e.g. in cross attention K and V are calculated
with the output hidden state of the encoder. While it has no impact on our method in section 4, we will simply
discuss the situation of self-attention.
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Figure 2: Generation Procedure and Architecture of MERGE.

c) Feed forward, i.e. hn = fln(fdr(W
nT
O ·(Act(WnT

I ·xnatt+bnI )+bnO)+xnatt), where Wn
I ∈ Rd×dI

and Wn
O ∈ RdI×d are weighted matrices, bnI ∈ RdI and bnO ∈ Rd are bias vectors, dI is the dimension

of intermediate hidden states, and Act(·) denotes the activation functions such as ReLU Agarap
[2018] and GeLU Hendrycks and Gimpel [2016].

4 MERGE

In this section, we present MERGE, a fast text generation framework for private inference. Illustrated
in Figure 2, MERGE consists of two independent optimizations, the embedding resending (ER)
strategy, and a new architecture built upon the merge module (MM).

4.1 Embedding Resending

As shown in Figure 2, the ER strategy aims to speed up the generation process by avoiding time-
consuming operations (e.g. embedding table query in Section 3.1 a)) and decoupling the computation
between representation learning (Section 3.1 b)) and token sampling (Section 3.1 c)). In detail, ER
simply set the newly added token embedding Et[Nt] as the generated hidden state at the last step
(hnl

t−1[Nt−1]), i.e.

Et = [Et−1;hnl
t−1[Nt−1]] = [E0;hnl

t−1], (3)
where E0 denotes the token embeddings of the prefix p and “;” denotes the concatenation operation.

In intuition, Equation 3 regards Embedding table query (Section 3.1 a)) as the inverse procedure of
next token sampling (Section 3.1 c)), which implies that hidden states and token embeddings are in
the same representation space, and the embedding layer fe is the inverse function of fcls. Therefore,
to align the representation between hnl

t−1[Nt−1] and Et[Nt], we design a training task that maximizes
the cosine similarity between these vectors, i.e.

Lcos =
1

Ntr ·N

Ntr∑
i

N∑
t=1

1− cosine(hnl
i,t−1[Nt−1],Ei,t[Nt]), (4)

where cosine(a, b) = a·b
||a||·||b|| is the cosine similarity, Ntr is the number of train set, and N denotes

the sequence length.

In Equation 4 we select the cosine similarity instead of mean square error (MSE) because the inner
product (e.g. self-attention in Section 3.2 b)) plays a key role in the Transformer module.

Besides, we observe that the error of token embeddings significantly impacts the performance of the
Transformer model ftr and leads to nonsensical sentence generation with the MSE value over 10−3 .
To enhance the robustness of ftr, we introduce an embedding augmentation method that first masks
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each element et in Et with a rate p, and then adds a uniform noise sampled from the small interval
(−ϵ, ϵ), i.e.

ẽt = mt · (et + nt), (5)

where mt ∼ Bernoulli(1− p) and nt ∼ Uniform(−ϵ, ϵ).

Thus the cross-entropy loss can be formatted as

Lce =
1

Ntr ·N

Ntr∑
i

N∑
t=1

xt[Nt] · logfcls(ftr(Ẽ
′
t))[Nt], (6)

where Ẽ
′
t is the combination of noised token embedding Ẽt and others.

The overall train loss can be formatted as

L = λLcos + (1− λ)Lce, (7)

where λ ∈ [0, 1] is the weighting factor.

4.2 Layer Merging

In this subsection, we focus on designing an efficient approximation of the Transformer module ftr
(Section 3.2), i.e. the merge module fmer, to accelerate the inference in the linear computation and
softmax function.

Following recent research Hassid et al. [2022], we first replace the dynamic self-attention matrix An

with a constant attention matrix Cn ∈ RNh×Nt×Nt . We initialize Cn with the average of An in train
set, i.e.

Cn =
1

Ntr

Ntr∑
i

An
i (8)

Besides, we approximate the layer normalization fln in Section 3.2 b) with a simple element-wise
multiplication f ′

ln(x) = x ⊙ γ + β, inspired by the previous work Chen et al. [2022]. Consequently,
the attention procedure presented in Section 3.2 b) can now be approximated as

xnatt = f ′
ln(fdr(W

nT
d · (Concat(Cn · Vn)) + bnd ) + hn−1). (9)

Based on Equation 9, we can simplify the whole computation procedure by reorganizing matrix
computations in ftr and merging intermediate linear operations. Specifically, we can merge the
projection operation Wn

V , the linear map Wn
d , the approximated layer normalization function f ′

ln,
as well as the first linear map in feed-forward Wn

I into a single linear layer, i.e. a weighted matrix
Mn

u ∈ Rd×dI and a bias term bnMu
∈ RdI , which can be formatted as:

Mn
u = (WV n ·Wn

d + 1)⊙ γ ·Wn
I ,

bnMu
= WnT

I ⊙ γ · bnd +WnT
I · β + bnI ,

(10)

where 1 ∈ Rd×d is the residual term in attention module (Section 3.2 b)).

Equation 10 shows that there are no parameters dependent on input token embeddings E′
t. Hence,

we can compute Mu and bMu before the inference stage, thus reducing the computation during
model execution. As a result, we can simplify the entire Transformer module into only three tensor
multiplications, i.e.

xn
o = fmer(hn−1) = fln(W

n
O
T · Act(Mn

u
T · Cn · hn−1 + bnMu

) + bnO) (11)
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Although it may appear possible to merge Mn
u with the previous linear matrix Wn−1

O in Equation
11 by approximating the layer normalization fln with f ′

ln, we choose to keep them separate for the
following two reasons. Firstly, the merged matrix Wn−1

O · Mn
u ∈ RdI×dI has significantly more

parameters than WO plus Mu, since dI is typically larger than d. Secondly, removing fln in Equation
11 will hurt the convergence of the merge module heavily during training (detailed in Section 5.4).

In addition, to derive Equation 10 and Equation 11, we need to swap Wn
v and Cn, which requires the

verification that the matrix multiplications on the tensor hn−1
t under different dimensions obeys the

commutative law. Proofs of this assertion are available in Appendix B.

Time/ Communication TimeModel EmbedTime LinearTime SoftmaxTime Total Time Speedup

GPT2-base (124M)
CrypTen 321.44/52.33 251.93/74.21 454.61/113.96 1328.26 1x
MPCformer (sm2relu) 316.75/51.55 253.57/76.56 181.14/45.59 1001.41 1.33x
MPCformer (sm2quad) 318.16/50.88 253.30/75.16 152.45/37.40 972.50 1.36x
THE-X 329.29/58.30 258.00/80.21 87.71/19.28 965.79 1.37x
MERGE (ours) 5.17/0.87 157.50/53.97 0.00/0.00 171.38 7.75x
MERGE (only ER) 5.41/0.95 260.36/80.00 477.76/124.83 834.13 1.59x
MERGE (only MM) 320.84/50.92 250.98/81.57 0.00/0.00 747.45 1.78x

T5 (138M)
CrypTen 323.46/53.36 328.09/96.08 693.73/175.57 1569.41 1x
MPCformer (sm2relu) 327.51/55.36 328.61/96.80 284.65/75.17 1207.63 1.30x
MPCformer (sm2quad) 324.81/52.03 325.97/92.89 235.54/58.47 1149.07 1.37x
THE-X 316.16/48.58 321.90/90.82 126.73/25.51 1050.28 1.49x
MERGE (ours) 7.62/1.27 131.31/44.11 0.00/0.00 144.02 10.89x
MERGE (only ER) 8.24/1.58 211.57/65.19 596.74/166.50 874.36 1.79x
MERGE (only MM) 322.38/51.35 221.57/69.22 0.00/0.00 693.30 2.26x

Table 1: Inference Time Comparison of Private Text Generation Models.

Model EmbedBytes LinearBytes SoftmaxBytes TotalBytes Fraction
GPT2-base (124M)

CrypTen 71.41GB 159.36GB 1.62GB 322.54GB 100.00%
MPCformer (sm2relu) 71.41GB 135.54GB 0.54GB 317.20GB 98.34%
MPCformer (sm2quad) 71.41GB 135.54GB 0.07GB 316.73GB 98.20%
THE-X 71.41GB 135.54GB 0.50GB 319.14GB 98.95%
MERGE (ours) 1.15GB 119.89GB 0.00GB 121.76GB 37.75%
MERGE (only ER) 1.15GB 160.63GB 1.62GB 168.51GB 52.24%
MERGE (only MM) 71.41GB 119.89GB 0.00GB 281.88GB 87.39%

T5 (138M)
CrypTen 147.14GB 199.97GB 7.72GB 380.45GB 100.00%
MPCformer (sm2relu) 147.14GB 199.97GB 2.73GB 364.74GB 95.87%
MPCformer (sm2quad) 147.14GB 199.97GB 0.33GB 362.33GB 95.24%
THE-X 147.14GB 199.97GB 2.97GB 369.73GB 97.18%
MERGE (ours) 1.73GB 95.66GB 0.00GB 98.03GB 25.77%
MERGE (only ER) 1.73GB 120.17GB 7.56GB 132.44GB 34.81%
MERGE (only MM) 73.72GB 95.66GB 0.00GB 257.89GB 67.79%

Table 2: Averaged Communication Bytes for Private Text Generation.

5 Experiments

5.1 Settings

Datasets. We evaluate MERGE on three representative text generation tasks, including Multiwoz Eric
et al. [2020], a human-human multi-turn task-oriented dialogue corpus, DailyDialog Li et al. [2017],
a multi-turn chitchat dataset, and CommonGen Lin et al. [2020], a hard-constrained controlled text
generation benchmark. The details of datasets can be seen in Appendix C.1.

Baselines. We compare MERGE with several state-of-the-art private inference models and frame-
works, including:

• THE-X Chen et al. [2022], one of the first approximation architecture of Transformer models;
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• MPCformer Li et al. [2022], the approximated model that aims to accelerate the inference procedure
of Transformer;

• Crypten Knott et al. [2021], one of the MPC implementations for PyTorch.

Evaluation Metrics. We evaluate MERGE in two dimensions: inference speed, and the effectiveness
of approximation models. For inference speed, we record both the computation time and the
communication bytes for each method. For the effectiveness of PLMs, we use Meteor Banerjee
and Lavie [2005], CHRF++ Popovic [2017], NIST Lin and Och [2004], ROUGE family Lin [2004],
BERTscore Zhang et al. [2020], and BARTscore Yuan et al. [2021] as the metrics. A detailed
introduction can be found in Appendix C.2.

5.2 Implementation Details

We use GPT-2 (124M) Radford et al. [2019], T5-small Raffel et al. [2020], and Bart-base Lewis et al.
[2020] as the basic evaluation backbone, with max sequence length 128. We trained all models under
the learning rate 3× 10−5, batch size 4 with 3 epochs, based on the implementation of huggingface
Transformers Wolf et al. [2020]. As for the distillation of approximated models, we train our baselines
under the same hyperparameter settings in their source code, and train MERGE with 50000 steps
under the learning rate 8× 10−5. All experiments above are on a single 32 GB Nvidia Tesla V100
GPU. Following previous works Li et al. [2022], for the experiments of private inference, we use
two 32 GB Nvidia Tesla V100 GPUs to simulate the client and the server, with 10 GbE Ethernet
bandwidth. We implement the whole MPC system based on Crypten Knott et al. [2021], a semi-honest
MPC framework built on PyTorch. The implementation detail can be seen in Appendix A.

5.3 Speed Evaluation

We evaluate the inference speed under two mainstream NLG architecture, i.e. the pure decoder
represented by GPT-2, and the encoder-decoder models represented by T5. We evaluate these two
architectures with the sequence length 128, and record the total inference time as well as the time
cost of each operation. As shown in Table 1, our method MERGE can obtain a 7.75x speedup to the
encrypted GPT-2, and 5.8x to MPCformer. Besides, the vanilla encrypted GPT-2 with our embedding
resending (MERGE only ER) can obtain a 59x speedup on embedding table query, and our merge
module can help GPT-2 and T5 reduce half of the linear inference time, and achieve zero time cost
in the softmax of attentions. Another phenomenon is that MERGE achieves a higher speedup on
T5 than GPT-2, which is because in T5 every self-attention module follows with a cross-attention
module.

Under the same settings of Table 1, we also record the communication bytes between the client and
the server, shown in table 2. We can see existing methods reduce the communication volume slightly
(less than 2% in GPT-2), while our method can reduce 62% communication bytes, with 98% and
25% on embedding table query and linear operation, respectively.

5.4 Performance Evaluation

Based on the improvements of inference speed, we focus on the inference performance between
our MERGE method and other MPC frameworks. Table 3 shows the effectiveness of our methods
and baselines, where the BERTscore of our MERGE method is lower than MPCformer with ReLU
approximation (MPCformer (sf2relu)) by 0.01?, 0.017, and 0.001 in MultiWoz, CommonGen, and
DailyDialog, respectively. This demonstrates that our methods maintain the comparable results
to these baselines. Besides, Table 3 indicates that some acceleration methods designed for NLU
models are not suitable to text generation models, i.e. they suffer from the convergence problem
during training. For instance, THE-X replaces all layer normalization operations to the approximate
normalization, which we observed will lead to the out of time (OOT) issue. Similarly, MPCformer
that replace the softmax function to quadratic functions (MPCformer (sf2quad)) faces the same
problem, though we train it with an elaborate layer-wise knowledge distillation.
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Model BERTscore BARTscore NIST Rouge-L METEOR CHRF++
MultiWoz NLG Eric et al. [2020]

GPT-2 (124M) 0.9237 -2.9020 4.7907 0.4424 0.4900 43.2777
+ER (no train) 0.6860 -5.0660 0.2325 0.0707 0.0425 3.9721
+MPCformer (sf2relu) 0.9287 -2.5377 5.7248 0.4806 0.5792 48.8241
+MPCformer (sf2quad) OOT OOT OOT OOT OOT OOT
+THE-X OOT OOT OOT OOT OOT OOT
+MERGE (Ours) 0.8984 -3.1464 3.7444 0.3970 0.4302 36.6983
+MERGE only ER 0.9155 -2.8057 5.0812 0.4339 0.5102 44.2484
+MERGE only MM 0.9268 -2.6277 5.6524 0.4778 0.5647 47.7262
T5-small (60M) 0.9140 -2.8916 4.245 0.4216 0.5225 45.0229
+ER (no train) 0.0 -5.0347 - 0.0 0.0 0.0
+MPCformer (sf2relu) 0.9126 -2.7133 4.2952 0.4053 0.5354 45.5565
+MPCformer (sf2quad) OOT OOT OOT OOT OOT OOT
+THE-X OOT OOT OOT OOT OOT OOT
+MERGE (ours) - - - - - -
+MERGE only ER 0.9053 -3.1444 4.3608 0.3789 0.4379 38.2502
+MERGE only MM 0.9123 -2.8744 4.6270 0.4176 0.4879 42.6995
Bart-base 0.9301 -2.5284 5.8325 0.4889 0.5823 49.1391
+ER (no train) 0.0491 -5.0379 - 0.0038 0.0009 0.0507
+MPCformer (sf2relu) 0.8318 -4.1432 1.3971 0.1956 0.2157 19.2337
+MPCformer (sf2quad) OOT OOT OOT OOT OOT OOT
+THE-X OOT OOT OOT OOT OOT OOT
+MERGE (ours) - - - - - -
+MERGE only ER 0.9305 -2.4158 6.8489 0.5329 0.6070 52.5836
+MERGE only MM 0.8868 -3.6204 3.5688 0.3022 0.3662 31.6465

CommonGen Lin et al. [2020]
GPT-2 (124M) 0.9336 -3.4710 3.7840 0.2744 0.3012 27.7038
+ER (no train) 0.5999 -4.9864 0.0701 0.0192 0.0066 0.9470
+MPCformer (sf2relu) 0.8943 -4.1436 2.1301 0.1861 0.2691 27.6167
+MPCformer (sf2quad) OOT OOT OOT OOT OOT OOT
+THE-X OOT OOT OOT OOT OOT OOT
+MERGE (ours) 0.8821 -4.2479 0.6639 0.2025 0.1538 16.0573
+MERGE only ER 0.8953 -3.8979 1.6796 0.2430 0.2110 20.8878
+MERGE only MM 0.9083 -4.0885 2.2687 0.2026 0.2058 20.9888

DailyDialog Li et al. [2017]
GPT-2 (124M) 0.8404 -6.6387 0.5429 0.1142 0.1042 11.5089
+ER (no train) 0.7518 -6.8820 0.1287 0.0566 0.0526 6.8067
+MPCformer (sf2relu) 0.8161 -6.3494 1.1102 0.1322 0.1261 12.0713
+MPCformer (sf2quad) OOT OOT OOT OOT OOT OOT
+THE-X OOT OOT OOT OOT OOT OOT
+MERGE (ours) 0.8213 -6.2384 0.3674 0.1233 0.0955 7.8091
+MERGE only ER 0.8205 -6.5515 0.1069 0.1301 0.0833 6.5819
+MERGE only MM 0.8343 -6.5800 1.0499 0.1525 0.1364 14.9039

Table 3: Performance Experiments of Private Text Generation.

6 Analysis

6.1 Varying Sequence Lengths and Model Parameters

In this section, we dive to explore the effectiveness of our MERGE method under longer sequence
length and larger model parameters. For sequence length, we set it from 64 to 512, and record the
averaged score as well as the minimum and maximum score for each point. Illustrated by Figure 3, we
can see the inference time cost as well as the communication volume decreases with the improvements
of sequence length. In detail, our MERGE method can obtain a 26.5x speedup to the vanilla model
and 11.8x to existing state-of-the-art model THE-X under sequence length 512, and reduce almost
80% communication Bytes. Besides, we can see our embedding resending (ER) strategy can obtain a
constant embedding inference time, which is because ER bypasses the embedding table query, and
thus its embedding time only related to the generation prefix of samples.
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Figure 3: Experimental Results varying Model Parameters.
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Figure 4: Experimental Results varying Model Parameters.

For model parameters, we also evaluate MERGE under different model sizes from 82M to 391M,
and set the sequence length to 128. Different from Figure 3, Figure 4 demonstrates that there are no
significant improvements of speedup while the model size increasing, but our MERGE method still
obtains an obvious speedup (~10x) to existing methods. Besides, our method exhibits a conspicuous
positive correlation with the model parameter size in terms of the gap between our method and
the baselines, particularly in linear time and the communication volume, which demonstrate the
effectiveness of MERGE.

7 Conclusion

In this paper, we address the problem of private text generation, and propose MERGE, a novel
framework to accelerate the inference procedure of existing generative language models. MERGE
consists of two optimizations, embedding resending and the merge module. The former speeds up the
auto-regressive generation by bypassing the embedding table query of vanilla Transformer models,
and the latter optimizes and merges the computation of Transformer modules. Extensive experiments
demonstrate the superiority of our method both in inference speed and the generation quality. In the
future, we plan to design a fast and plug-and-play MPC framework for existing language models.
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