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Abstract

Overfitting remains a significant challenge in the appli-
cation of Multiple Instance Learning (MIL) methods for
Whole Slide Image (WSI) analysis. Visualizing heatmaps
reveals that current MIL methods focus on a subset of
predictive instances, hindering effective model generaliza-
tion. To tackle this, we propose Attention-Challenging MIL
(ACMIL), aimed at forcing the attention mechanism to cap-
ture more challenging predictive instances. ACMIL incor-
porates two techniques, Multiple Branch Attention (MBA)
to capture richer predictive instances and Stochastic Top-
K Instance Masking (STKIM) to suppress simple predictive
instances. Evaluation on three WSI datasets outperforms
state-of-the-art methods. Additionally, through heatmap vi-
sualization, UMAP visualization, and attention value statis-
tics, this paper comprehensively illustrates ACMIL’s ef-
fectiveness in overcoming the overfitting challenge. The
source code is available at https://github.com/
dazhangyul23/ACMIL.

1. Introduction

Whole slide image (WSI) analysis is a critical undertak-
ing in digital pathology, aiming to extract valuable informa-
tion from high-resolution scanned images for precise diag-
nosis [21,31,48,51], prognosis [9,30,54,60], and treatment
planning [11, 33, 35, 38, 39] of diseases. In recent years,
multiple instance learning (MIL) [1, 16,36] has emerged as
a promising approach for WSI analysis, treating each WSI
as a “bag” and its extracted small patches as “instances”
within the bag, thus enabling efficient classification of WSIs
through assigning a single label to the entire slide.

Overfitting is a significant challenge in utilizing MIL
methods for WSI analysis [32,45,56]. Firstly, common WSI
datasets exhibit the intrinsic characteristics of limited data
scale, ultra-high resolutions, and severe class imbalance,
which makes overfitting more likely [2]. These datasets
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Figure 1. Comparison of performance between ABMIL [25] and
our ACMIL on the LBC validation set throughout the training pro-
cess. ABMIL displays pronounced signs of overfitting, as indi-
cated by a significant increase in validation loss and a decline in
the other three evaluation metrics. Conversely, ACMIL effectively
mitigates the overfitting issue.

often consist of a relatively small number of slides, typi-
cally in the hundreds, each containing numerous patches,
ranging from thousands to tens of thousands, with a rel-
atively low proportion of positive cases. Secondly, these
datasets are susceptible to data bias caused by variations in
tissue preparations, staining protocols, and digital scanning
methods [32, 57]. This bias can mislead machine learn-
ing models into making classifications based on spurious
features rather than the underlying biological characteris-
tics [17, 18]. As illustrated in Fig. 1, ABMIL [25], one
of the most famous MIL methods, shows severe overfitting
since loss drastically increases and validation metrics sig-
nificantly decreases as the training processes.

Numerous efforts [14, 23, 24, 29, 34, 40, 43, 45, 46, 55]
have been made to mitigate the overfitting challenge. These
approaches have proven effective in improving evalua-


https://github.com/dazhangyu123/ACMIL
https://github.com/dazhangyu123/ACMIL

tion metrics on standard benchmarks. On the other hand,
heatmap visualization, a valuable tool, is commonly used to
enhance model interpretability [25]. In fact, heatmaps also
play a critical role in aggregating instance features into bag
features, which directly impact the final predictions. Ex-
isting studies have primarily focused on the interpretability
aspect of heatmaps and have rarely explored their connec-
tion to the problem of overfitting.

In this paper, we study the overfitting challenge resort-
ing to the heatmap. Heatmap shows that existing attention
mechanisms predominantly concentrate on a subset of pre-
dictive instances while disregarding the remaining predic-
tive ones (refer Fig. 5). However, recent studies [ 14,24,46]
have shown that models trained solely on simple predictive
features may struggle to generalize to out-of-distribution
data. In conclusion, the excessive concentration of atten-
tion values in heatmap is closely link to the overfitting.

To mitigate the excessive concentration of attention val-
ues, we start with two additional analyses for the heatmap.
Firstly, there are various patterns among predictive in-
stances, and existing attention mechanisms only can cap-
ture a part of them. To solve this, we introduce the Mul-
tiple Branch Attention (MBA) method. MBA utilizes mul-
tiple attention branches, where each branch is responsible
for capturing instances with the specific pattern, ensuring
that richer predictive instances contribute to the final predic-
tion. Secondly, in the existing attention mechanism, a few
of instances will occupy majority attention. To mitigate it,
we propose Stochastic Top-K Instance Masking (STKIM).
STKIM randomly masks a portion of instances with top at-
tention values at each iteration and then assigning their at-
tention values to remaining instances. Combining both of
them, we propose the Attention-Challenging MIL (ACMIL)
framework, aiming to force attention mechanisms to cap-
ture more challenging predictive instances.

We conduct experiments on three WSI datasets, i.e.,
Camelyon16, BRACS, and our in-house LBC dataset. Ex-
perimental results demonstrate that our ACMIL signif-
icantly outperforms existing SOTA methods. We also
present substantial experimental results, including heatmap
visualization, umap visualization, and attention value statis-
tics, to demonstrate the effectiveness of ACMIL in combat-
ting overfitting.

2. Related Work
2.1. Combating Overfitting in WSI Analysis

In the domain of WSI analysis, combating the challenge
of overfitting has received substantial attention. Several ap-
proaches have emerged, each with distinct focuses on im-
provement.

Some efforts have concentrated on enhancing the quality
of feature representations. Early studies (e.g., [0, 25, 43])

relied on backbones pretrained on the ImageNet dataset.
However, the substantial domain gap between natural and
pathological images hindered representation quality. Re-
cent works (e.g., [13,22,34,50]) have addressed this by em-
phasizing Self-Supervised Learning (SSL) to learn patch-
level feature representations. In addition, efforts such as
the work by Chen et al. [8] leveraged hierarchical SSL for
high-resolution image representations. Further, studies by
Li et al. [29] and Wang et al. [49] demonstrated that fine-
tuning the pretrained encoder is essential for acquiring task-
specific information.

Other efforts have centered on improving attention
mechanisms. For instance, ABMIL [25] introduced gated
attention for predicting attention scores. DSMIL [28] used
instance-to-instance distances to calculate attention scores.
Moreover, some studies explored recurrent neural networks
[6], self-attention layers [4 1,43, 53], and graph neural net-
works [19, 58] to model inter-instance relationships.

Further strategies have aimed at refining the training pro-
cess. For example, DTFD-MIL [56] introduced pseudo-
bags to expand bag counts and employed a double-tier MIL
framework. IBMIL [32] leveraged interventional training
via backdoor adjustment to mitigate bias from contextual
priors. IPS [4], Zoom-In Network [27], and RankMix [10]
focused on generated bag representations by aggregating
the representations of most salient patches. MHIM-MIL
[45] masked instances with high attention scores, empha-
sizing the significance of hard instances during model train-
ing. Our work may share the similar motivation with these
work. Nevertheless, our solution is based on the observa-
tion and analysis of heatmap, whereas the existing methods
more rely on the intuition.

Our work is done independently and concurrently with
MHIM-MIL [45].

2.2. Heatmap Visualization in WSI analysis

Heatmaps are valuable tools for assessing the inter-
pretability of MIL methods [25]. Many existing methods
[13,25,28,29,34,43,45,52,55] rely on heatmap visualiza-
tions to showcase their enhanced interpretability. It’s im-
portant to recognize that heatmaps play a central role in ag-
gregating instance features into bag-level features, signifi-
cantly impacting the model’s generalization capacity. This
paper stands out by pioneering the use of heatmap as a tool
for analyzing the overfitting challenge.

3. Method

Based on the ABMIL (detailed in Sec. 3.1), we present
ACMIL to alleviate the overfitting problem, which is built
on two components: Mutiple Branch Attention (MBA) and
Stochastic Top-K Instance Masking (STKIM). We describe
the details of two components in the Sec. 3.2 and 3.3, re-
spectively.



3.1. ABMIL for WSI Analysis

In the binary MIL classification problem [6], a bag of
instance, X = {z,}Y_;, is associated with a single bag
label, Y. Each instance, x,, is associated with a single
binary label, y,,, which remains unknown during training.
The assumption behind the MIL can be written as:

. N
Y: {(1)’ lff Zn:lyn:o

otherwise
In the ABMIL [25], the multiple instance learning is
modeled by a three step process. i) Instance transforma-
tion into a low-dimensional embedding through neural net-
works: h, = f(x,). ii) Aggregation of all instance em-
beddings into the bag-level representation using an attention
operator. Specifically, this operation is defined as:
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Here, a,, = o(h,,) represents the attention values for n-th
instance, h,,. In the case of ABMIL, a gated attention (GA)
mechanism [12] is adopted:

o(hy) = exp{wT (tanh(V1 h,) © sigm(Vsh,,))}
" S explwT (wnh(Vihy) © sigm(Vohy))}
3)
iii) The bag prediction is generated based on the aggregated
bag embedding: Y = g(z).

3.2. Mutiple Branch Attention

Motivation. It is challenging to capture all predictive in-
stances using a single attention operator (see Fig. 2). Firstly,
there are variations in patterns among predictive patches
due to the texture difference. Then, DNNs exhibit lazi-
ness in finding more challenging features when captur-
ing the simple predictive patterns is enough to minimize
the training loss [17, 18]. To capture more predictive in-
stances, we design the MBA that consists of multiple at-
tention branches. Each branch is responsible for capturing
instances with the specific pattern, ensuring that more pre-
dictive patterns contribute to the final prediction.

As depicted in Fig. 3 top view, the MBA firstly captures
M predictive patterns and then aggregates their embeddings
to make prediction. Each pattern is captured by an atten-
tion branch. To ensure the predictive semantic and semantic
diversity between patterns, the semantic regularization and
diversity regularization are proposed, respectively. Firstly,
to ensure capturing predictive patterns, the semantic regu-
larization is accomplished by hanging a MLP layer behind
each pattern embedding, equipping with the cross entropy
loss function:

M
L, = —%ZYlogYi—i—(l—Y)log (1-1‘@) (4)
=1
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Figure 2. Motivation of MBA. UMAP visualization [37] of in-
stance features in the tumor region of Camelyon16 ’test_113’ case.
There are various patterns/clusters among predictive instances,
and relying on one single branch can only capture a part of clus-
ters. Three instances are selected to exhibits their texture differ-
ences.

where Y; = gi(z;) is the prediction based on i-th pattern
embedding, z;. However, only equipping with cross en-
tropy loss may learn the similar patterns and cannot dig out
more predictive information. To tackle this issue, we further
introduce a diversity loss as follows:

9 M M
Ed = m Z Z COS(ai,aj) (5)

i=1 j=i+1

where a; consists of all attention values of i-th pattern,
a; = {ap, -+ ,a;n}, also named heatmap as custom.
The cos(-) function is used to measure the similarity of the
heatmaps between branches. By diversifying the heatmaps,
the embedding of each branches can concentrate on differ-
ent predictive patterns.

To aggregate the captured patterns to make prediction,
the average of heatmaps is utilized as the heatmap of the

whole bag:
M
1
a=r ; a; (6)

where a is the heatmap of the whole bag, with dimension
of N. Then, the bag embedding can be got by aggregating
the instance features using averaged heatmap a. Moreover,
since 25:1(ﬁ sz\il ain)hn = 37 Zf\il(ZﬁLl ainhn),
the bag embedding also can be formulated by applying
mean pooling operator to pattern embeddings. The top view
of Fig. 3 adopts the latter formulation for brevity. The loss
function for the bag classifier is defined as:

Ly=-Ylog¥ +(1-Y)log (1—?) )

Finally, the overall loss function for the ACMIL can be writ-
ten as the combination of three loss terms defined in Eq. 4,
5and 7,

L=Ly+Ly+ Ly ®)
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Figure 3. Overview of the proposed MBA (top view) and STKIM (bottom view). In the MBA, M predictive patterns are extracted from
patch features using the attention operator regularized by semantic and diversity regularization terms. Then, a mean operator is performed
to generate the bag feature, used for bag-level prediction. In the STKIM, p x 100% instances with top-K attention values are masked

randomly in the attention operator.

Discussion. It’s worth noting that when M is set to 1,
the MBA essentially equals to the feature aggregation pro-
cess of ABMIL, which can only discern one single pattern.
Thus, the MBA can be viewed as an extension for ABMIL
used for capturing more diverse predictive patterns. Oth-
erwise, We emphasize the different goals of using parallel
attention modules in our MBA and the recent work, DTFD-
MIL [56]. DTFD-MIL aims to augment the bag by ran-
domly split the bag into several sub-bags, and parallel at-
tention modules are used to capture the discriminative in-
stances in each sub-bags. For the MBA, the parallel atten-
tion modules are used to capture distinct predictive patterns
from the whole bag.

3.3. Stochastic Top-K Instance Masking

Motivation. As depicted in Fig. 4, we find that a few in-
stances may occupy majority attention in ABMIL. For ex-
ample, The sum of top-10 attention values is larger than
0.85 on all three datasets. To alleviate this issue, we present
STKIM that randomly masks a portion of instances with
top-K attention values and then assigning their attention val-
ues to remaining instances.

As depicted in Fig. 3 bottom view, STKIM introduces
a masking operation into the attention mechanism, before
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Figure 4. Motivation of STKIM. Accumulation of top-k atten-
tion values. Instances with top-k attention values occupy majority
attention. Results are derived from features extracted through su-
pervised pretraining.

feature aggregation and after attention values generation.
The primary objective is to mask a few of the most pre-
dictive instances, redirecting more attention toward subor-
dinate instances. A straightforward solution to achieve this
is to mask the top-K instances. However, this method poses
certain challenges. It can result in the loss of information
associated with key instances, which are crucial for dis-



crimination. Furthermore, it might lead to a statistical mis-
match between the feature representations before and after
discarding these key instances. To address these issues, we
draw inspiration from dropout techniques [44] commonly
used in neural networks. Our proposed solution employs
stochastic masking for instance features with top-K atten-
tion values.

Specifically, we begin by sorting all attention values
from highest to lowest. Subsequently, we randomly set the
attention values of the top-K instances to 0, with a probabil-
ity of p. This process can be formulated as:

0,  with probability p and within top-K values
i a,, otherwise
©)
where p and K are two hyperparameters that control the
intensity of masking. Notably, following the STKIM, we
will rescale the attention values by a,, — ——ay,, to

n=1an
ensure 25:1 ap = 1.

Discussion. There are notable technical distinctions be-
tween STKIM and MHIM-MIL [45]. Firstly, MHIM-MIL
adopts a two-stage training procedure where the model
trained in the second stage is initialized using the best
checkpoint obtained in the first stage. In contrast, STKIM
is a one-stage framework that doesn’t require a pre-trained
checkpoint beforehand, providing better scalability. Sec-
ondly, MHIM-MIL employs instance masking on a mo-
mentum teacher model, using the masked instances to train
a student model. This involves two forward propagations
for calculating attention values and producing bag predic-
tions. On the other hand, STKIM utilizes a single model
and necessitates only one forward propagation, resulting in
faster execution compared to MHIM-MIL. Thirdly, MHIM-
MIL incorporates three masking strategies and introduces
five masking hyperparameters, which can be a complex
and time-consuming trial-and-error process for reaching the
optimal performance. In contrast, STKIM primarily in-
volves two hyperparameters, p and K. Moreover, our ab-
lation study in Appendix Sec. D.1 demonstrates that setting
p = 0.6 and K = 10 achieves near-optimal performance
across all datasets, significantly reducing the effort and time
associated with trial-and-error tuning. Overall, STKIM has
better scalability, faster execution, and reduced trial-and-
error costs. In Appendix Sec. D.5, experimental results ver-
ify that our STKIM has the faster execution, without com-
promising on performance.

4. Experiments

4.1. Experimental Details

Datasets and Evaluation Metrics. The performance of
ACMIL is evaluated on two public WSI datasets, i.e.,
Camelyonl6 [3] and BRACS [5], and one private bench-
mark, LBC. Camelyon16 dataset consists of 400 WSIs in

total, including 270 for training and 130 for testing. Fol-
lowing [28, 56], we further randomly split the training and
validation sets from the the official training set with a ratio
of 9:1. We do not resplit BRACS dataset as it has been of-
ficially split to 395 of training set, 65 of validation set, and
87 of test set. We follow the challenge for a 3-class WSI
classification: benign tumor, atypical tumor, and malignant.
The liquid-based cytology (LBC) dataset collected 1,989
WSIs and include 4 classes, i.e., Negative, ASC-US, LSIL,
and ASC-H/HSIL. We randomly split the whole dataset to
training, validation, and test sets with the ratio of 6:2:2. Fol-
lowing [29], macro-AUC and macro-F1 scores are reported
since all the three datasets are class imbalanced. Each of
the main experiments is performed five times with random
parameter initializations, and the average classification per-
formance and standard deviation are reported.

Baselines. We systematically assess the efficacy of our
ACMIL approach by benchmarking it against conventional
MIL pooling strategies, Max-pooling and Mean-pooling,
as well as contemporary attention-based techniques such
as ABMIL [25], DSMIL [28], TransMIL [43], CLAM-SB
[34], DTFD-MIL [56], MHIM-MIL [45], and IBMIL [32].
In pursuit of a comprehensive comparison across diverse
aggregation operators, we utilize two distinct sets of fea-
tures derived from ResNet-18 pretrained on the ImageNet
dataset [20] and ViT-S/16 pretrained using DINO [7] on a
substantial collection of 36,666 WSIs [26]. The results of
all other methods are reproduced using the official code they
provide under the same settings.

Implementation Details. Implementation Details are
placed in Appendix Sec. C.

4.2. Performance Evaluation against SOTA

Table 1 provides a thorough comparison of performance
between ACMIL and existing MIL methods. This evalu-
ation spans three diverse datasets, involves two different
choices for pretraining methods, and employs two crucial
evaluation metrics, resulting in a comprehensive assessment
with a total of 12 terms.

Considering the overall performance, ACMIL consis-
tently outshines existing methods. It secures the top po-
sition in 10 out of the 12 metrics and holds the second
position in the remaining 2 metrics. Specifically, for the
Camelyonl6, ACMIL achieves outstanding results using
ResNet-18 pretrained on ImageNet embeddings, surpassing
the runner-up by 2.1% and 2.6% in terms of Fl-score and
AUC, respectively. On the other hand, with ViT-S/16 SSL
pretrained embeddings, existing attention-based MIL meth-
ods exhibit remarkable performance, boasting F1-scores
and AUC values exceeding 0.9. Notably, ACMIL achieves
comparable performance with the former best-performing
method, DTFD-MIL, in this setup.

For the BRACS, ACMIL demonstrates a substantial lead
when utilizing ViT-S/16 SSL pretrained embeddings, sur-



Table 1. The performance of different MIL approaches across three datasets, two pretrained methods, and two evaluation metrics. The
most superior performance is highlighted in bold, while the second-best performance is indicated by underlining.

W CAMELYON-16 BRACS LBC

Method F1-score AUC Fl-score AUC F1-score AUC
Max-pooling 0.582+0.170  0.620+0.155 0.489+0.047 0.7384+0.014 0.476+0.033 0.77540.010
'ng Mean-pooling 0.592+0.026  0.59740.033  0.484+0.029 0.685+0.011 0.511+0.022 0.79740.011
w & Clam-SB 0.74240.024 0.763+£0.049 0.5214+0.046  0.750+0.039  0.5144+0.024 0.805+0.017
T ©  TransMIL 0.643+0.088 0.706+0.076  0.444+0.040 0.73240.043 0.385+0.013  0.69340.027
;qz’ g DSMIL 0.736+0.028 0.7734£0.034 0.511+0.052 0.75140.028 0.458+0.029 0.76640.023
é % DTFD-MIL 0.7584+0.051 0.815+£0.063 0.4694+0.016 0.717+0.032 0.4734+0.021 0.776+0.021
% IBMIL 0.777+£0.009  0.79940.050 0.510+0.043  0.72640.034 0.489+0.017 0.79140.021
E  MHIM-MIL 0.752+0.034  0.77240.026  0.511+0.022  0.774+0.021 0.543+0.037 0.81640.009
ABMIL 0.7574+0.020  0.790+0.027  0.5234+0.028 0.723+£0.035 0.4654+0.040 0.798+0.013
ACMIL(ours) 0.798+0.029 0.841+0.030 0.552+0.048 0.75440.008 0.546+0.028 0.821+0.015
Max-pooling 0.9034+0.054 0.956+£0.029 0.59640.029 0.823+0.033  0.59040.043  0.829+0.023
Mean-pooling 0.577+0.057 0.56940.081 0.522+0.038 0.73940.007 0.559+0.024 0.82740.012
-aza Clam-SB 0.925+0.035 0.969+0.024 0.631+0.034 0.8634+0.005 0.6174+0.022 0.865+0.018
§ ‘'S TransMIL 0.92240.019  0.943+£0.009 0.6314+0.030 0.841£0.006 0.5394+0.028 0.805=£0.010
2 g DSMIL 0.943+0.007 0.966+0.009 0.577+0.028 0.81640.028 0.562+0.028  0.82040.033
S 5 DTFD-MIL 0.9484+0.007 0.980+0.011 0.612+0.080 0.8704+0.022 0.612+0.034 0.84240.010
43 IBMIL 0.9124+0.034 0.954+0.022 0.6454+0.041 0.871£0.014 0.604+0.032 0.834=+0.014
MHIM-MIL 0.932+0.024 0.9704£0.037  0.625+0.060 0.8654+0.017 0.658+0.041  0.87240.022
ABMIL 0.914+£0.031  0.945+0.027 0.680+0.051 0.86640.029 0.5954+0.036 0.831£0.022
ACMIL(ours) 0.954+0.012 0.974£0.012  0.722+0.030 0.888+0.010 0.662+0.043 0.901+0.011
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Figure 5. Heatmap visualization of WSI examples produced by ABMIL [25] (baseline) and our ACMIL. The left part shows three tumor
WSIs come from Camelyonl6 dataset, and its tumor region is delineated by the red line. ACMIL generates attention values that cover a
more extensive portion of the tumor region compared to ABMIL. The right part shows three normal WSIs come from Camelyon16 dataset.
ABMIL primarily focuses on a part of tissue such as adipose, while ACMIL extends its attention to the more normal tissues.
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Figure 6. UMAP visualization of instance features in the tumor region of the Camelyon16 ’test_.090’ case. The tumor instances display
distinct patterns, posing a challenge for a single branch to capture all of them. As a result, ABMIL overlooks the right pattern/cluster. In
contrast, The varying branch in MBA capture patterns separately, and combining them enable the activation of more patterns. An instance

is considered active when its attention value surpasses %
passing the second-best performance by margins of 7.7%
and 1.7% in Fl-score and AUC, respectively. Moreover,
when employing ResNet-18 pretrained on ImageNet em-
beddings, ACMIL achieves comparable performance with
the previously top-performing method, MHIM-MIL. For
the LBC, ACMIL stands out significantly among the other
methods across all four metrics.

4.3. Heatmap Visualization

Fig. 5 presents heatmap visualizations illustrating exam-
ples of our approach’s performance in comparison to the
baseline method, ABMIL [25]. Three tumor slides (left
part) and three normal slides (right part) are selected to
showcase the heatmap differences. Otherwise, due to the
space limitation, we present more visualization at Appendix
for further insights.

For the tumor slides, ABMIL tends to concentrate its at-
tention on only a fraction of the tumor regions, potentially
overlooking other significant areas. In contrast, ACMIL al-
locates attention across a wider spectrum of tumor regions,
resulting in better alignment with expert annotations. For
the normal slides, ABMIL predominantly focuses on spe-
cific tissue types, such as adipose tissue. This will lead to
misinterpretation that only the adipose tissue is the normal
tissue and other normal regions are uncorrelated to the WSI
label. On the other hand, ACMIL effectively distributes at-
tention values to encompass all normal regions, ensuring
all regions are correlated for the WSI label. This approach
closely mimics human intuition and satisfies the definition
of the MIL formulation.

4.4. Further Analysis

MBA can capture diverse predictive patterns. We em-
ployed UMAP [37] to visualize instance features within the
tumor region of the Camelyonl6 ’test_090’ case. In Fig.
6a, it’s evident that the tumor instances exhibit two pri-
mary patterns. However, ABMIL primarily activates the
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Figure 7. Comparison of accumulative sum of top-k attention val-
ues with STKIM and without STKIM. The use of STKIM helps
alleviate the issue of excessive concentration of attention values
within the top-K range..

left pattern (colored orange) and neglects the right one. On
the other hand, as demonstrated in Fig. 6b, MBA’s vari-
ous branches (branch1, branch2, branch3, and branch5) col-
lectively capture the substructures of the left pattern, while
branch4 specifically captures the right pattern. Combining
all branches can capture more comprehensive patterns.
STKIM can suppress overly concentrated attention val-
ues. Fig. 7 illustrates a comparison of the cumulative sum
of top-K attention values with and without STKIM. The plot
clearly demonstrates that the use of STKIM helps mitigate
the scenario where top-K attention values excessively dom-
inate in the attention mechanism. This effect is particularly
pronounced for the Camelyon16 dataset, where the cumu-
lative sum of the top-10 values decreases from 0.87 to 0.6.
ACMIL can learn more discriminative bag features. We
employ UMAP [37] to visualize bag features from the LBC
test set, as illustrated in Fig. 8a and 8b. This visualization
demonstrates that our ACMIL is capable of learning more



Table 3. Performance comparison between ACMIL with (w.) and
without (w/0.) L4. The Gap column reports the performance dif-
ference between without and with £4. ACMIL without £, drasti-
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Figure 8. UMAP visualization [37] of bag features for LBC test
set. ACMIL learns more discriminative features than ABMIL ef-
fectively separating 'LSIL’ and *ASC-H/HSIL’ features from the
’Negative’ class. This improved feature separation is corroborated
by the V-measure score [42], a clustering metric that considers
both the homogeneity and completeness of the clusters.

Table 2. Performance comparison between ACMIL with (w.) and
without (w/o.) T-STKIM. The Gap column reports the perfor-
mance difference between with and without T-STKIM. T-STKIM
means using the STKIM at test phase. Using STKIM at test phase
slightly reduces its performance.

ViT-S/16 SSL pretrained

Dataset Metric w. T-STKIM  w/o. T-STKIM  Gap(%)
Camelvon Fl-score  0.927+0.057 0.954+0.012 +2.7
¥ AUC 0.967+0.017 0.97440.012 +0.7
BRACS Fl-score  0.697+0.033 0.722+0.030 +2.5
AUC 0.87540.012 0.88840.010 +1.3
LBC Fl-score  0.637+0.034 0.662+0.043 +2.5
AUC 0.878+0.012 0.90140.011 +2.3

ResNet-18 Imagenet pretrained

Dataset Metric w. T-STKIM  w/o. T-STKIM  Gap(%)
Camelvon Fl-score  0.780+0.026 0.798+0.029 +1.8
y AUC 0.837+£0.028 0.841£0.030 +0.4
BRACS Fl-score  0.566+0.054 0.55240.048 -14
AUC 0.750+£0.021 0.754+£0.008 +0.4
LBC Fl-score  0.535+0.027 0.54640.028 +1.1
AUC 0.808+0.019 0.821+£0.015 +1.3

discriminative features compared to ABMIL. Specifically,
it successfully separates the LSIL and ASC-H/HSIL clus-
ters from the Negative cluster. To quantitatively assess this
clustering performance, we employ the V-measure [42], fol-
lowing the methodology of Li et al. [29] and Diao et al. [15].
ACMIL achieves a V-measure score of 0.316, a significant
improvement over ABMIL, which scores 0.224.

Do we need STKIM at the test phase? Answer is No.
In Tab. 2, we present the outcomes of ACMIL with and
without STKIM during the test phase, along with the per-
formance differences between these settings. Across 11 out
of 12 evaluation metrics, the version of ACMIL without
STKIM during testing outperforms the version with STKIM
slightly. This suggests that STKIM is not necessary during
the test phase. Consequently, we can draw an analogy be-
tween the role of STKIM and masking data augmentation

cally reduces its performance.

ViT-S/16 SSL pretrained

Dataset Metric wlo. Lg w. Lg Gap(%)
Camelvon Fl-score  0.901+0.037  0.95440.012 +5.3
y AUC 0.943+0.027  0.97440.012 +3.1
BRACS Fl-score  0.642+0.046  0.72240.030 +8.0
AUC 0.859+0.020  0.88840.010 +2.9
LBC Fl-score  0.603+0.023  0.66240.043 +5.9
AUC 0.837+0.009  0.90140.011 +6.4

ResNet-18 Imagenet pretrained

Dataset Metric w/o. Lg w. Lg Gap(%)
Camelvon Fl-score  0.747+0.022  0.79840.029 +5.1
y AUC 0.796+0.032  0.84140.030 +5.5
BRACS Fl-score  0.500+0.031  0.55240.048 +5.2
AUC 0.760+0.026  0.75440.008 -0.6
LBC Fl-score  0.532+0.019  0.546+0.028 +1.4
AUC 0.809+0.018  0.8214-0.015 +1.2

techniques such as cutout [14,59].

Do we need diversity loss in MBA? Answer is Yes. In
Tab. 3, we present the outcomes of ACMIL with and with-
out L4, along with the performance differences between
these settings. Notably, the last column clearly indicates a
significant performance drop for ACMIL without L£4. This
emphasizes the crucial role of £; in encouraging different
branches to acquire distinctive predictive knowledge within
the MBA technique.

4.5. Ablation Study

Due to space limitation, we place the ablation study in
the Appendix Sec. D.1, with the main focus on the effect of
hyperparameter K, p, M. Note that the effect for ablating
MBA and STKIM is also discussed by setting M = 1 and
K = 0, respectively.

5. Conclusion

Due to intrinsic properties of WSI, MIL methods have
often led to overfitting, limiting their applications. This pa-
per revealed that the overly concentrated attention values in
heatmap is closely related to the overfitting. To Address
this, we proposes the ACMIL approach, which is under-
pinned by two novel techniques: MBA and STKIM. Our
experimental results on three datasets demonstrate ACMIL
significantly surpasses SOTA methods. Moreover, this pa-
per provides comprehensive experiments confirming the ef-
fectiveness of ACMIL on alleviating overfitting problem.
We hope the our work can inspire future exploration into
leveraging heatmaps for comprehensive analysis, encom-
passing both interpretability and generalization aspects. We
also hope that our ACMIL can find valuable applications in
a broader spectrum of WSI analysis tasks.
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A. Overview

In the ACMIL appendix, we provide valuable resources
and insights, including the source code (Sec. B), perfor-
mance comparison against baseline, implementation details
(Sec. C), additional experimental results (Sec. D), and a
discussion on limitations (Sec. E).

B. Source Code

The source code to train ACMIL is available at ht tps:
//github.com/dazhangyul23/ACMIL. For further
information on the environment setup and experiment exe-
cution, please refer to README.md. The implementation
of ACMIL is based on the source code of ABMIL [25] and
CLAM [34].

C. Implementation Details

Data Pre-processing. We adopt the data pre-processing
method from CLAM [34], which involves threshold seg-
mentation and filtering to locate tissue regions in each
whole-slide image (WSI). From these regions, we extract
non-overlapping patches of size 256 x 256 at a magnifica-
tion of x20 for Camelyonl6 and LBC datasets, and at a
magnification of x 10 for BRACS.

Feature Extraction. Given that ACMIL freezes the feature
extractor during training, we extract and save features with
512 dimensions for ResNet-18 and 384 dimensions for ViT-
S/16 to conserve space and expedite computation.

Model Architecture. The learnable components of the
model include one fully-connected layer to reduce features
to 256 dimensions for ResNet-18 and 128 dimensions for
ViT-S/16, a gated attention network, and a fully-connected
layer for making predictions.

Training. All models are trained for 100 epochs using a
cosine learning rate decay starting at 0.0001 for ViT-S/16
and 0.0002 for ResNet-18. We employ an Adam optimizer
with a weight decay of 0.0001, and the batch size is set to 1.
Hyperparameters. For the setting of Camelyonl6 and
natural supervised pre-training, we set hyperparameters as
M = 2, K = 10,p = 0.6. For the other situation, we set
hyperparameters as M = 5, K = 10,p = 0.6.

D. More Experimental Results

The additional experimental results include ablation
study (Sec. D.1), more heatmap visualizations (Sec. D.3),
instance feature analysis for normal slides (Sec. D.4), and
discussion for the computational cost of MBA (Sec. D.5).
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Figure 9. Hyperparameters sensitivity analysis on features extracted through the SSL pre-training. The effect of three hyperparameters,
K, p, M, is investigated. Note that the red dot line denotes the performance of baseline, ABMIL, and the green dot line denotes the
performance of ACMIL w/o MBA or STKIM. Five conclusions derived from the figure can be found in Sec. D.1.

D.1. Ablation Study

Fig. 9 illustrates the AUC scores of ACMIL across three
datasets when utilizing a ViT/B-16 feature extractor and
varying hyperparameter settings. Several key observations
emerge from these experiments:

Solely relying on MBA or STKIM can improving per-
formance: Implementing either MBA or STKIM alone
leads to significant performance improvements compared
to ABMIL. The green dotted lines represent ACMIL’s AUC
performance without MBA or STKIM, outperforming the
red dotted lines (ABMIL’s performance) across all sub-
figures. Particularly noteworthy is the observation that
MBA achieves better improvement than STKIM on all three
datasets, with the green dot lines in the last two columns sur-
passing those in the first column, especially on the Came-
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lyon and LBC datasets.

Combining MBA with STKIM further enhances perfor-
mance beyond what can be achieved with either MBA or
STKIM alone: Combining both MBA and STKIM yields
performance improvements beyond what can be achieved
with either MBA or STKIM individually. The blue dots rep-
resent ACMIL’s performance under different hyperparame-
ter combinations, with 39 out of 45 blue dots exceeding the
green horizontal lines.

Random Masking is important in STKIM: Random
masking is a crucial aspect of STKIM. The second column
demonstrates that setting p = 1.0 leads to a performance
deterioration across all three datasets. For LBC and Came-
lyon, a p = 1.0 setting even results in performance lower
than the green horizontal lines, indicating the ineffective-
ness of STKIM without random masking.



Table 4. The performance comparison between the baseline and our ACMIL across two attention mechanisms (i.e., gated attention (GA)
and multiple head attention (MHA)), three datasets, and two pretrained methods.

erformance CAMELYON-16 BRACS LBC
W Average
Fl1-score AUC F1-score AUC F1-score AUC
ResNet18 ImageNet pretrained
GA 0.757£0.020  0.790+0.027 0.523£0.028 0.7234+0.035 0.465+£0.040 0.798+0.013  0.676
+ACMIL 0.798+0.029 0.8414+0.030 0.5524+0.048 0.754+0.008 0.546+0.028 0.821£0.015  0.719
A(%) +4.1 +5.1 +2.9 +3.1 +8.1 +2.3 +4.3
MHA 0.752+£0.030  0.775%+0.027 0.502£0.039  0.7384+0.019 0.531£0.025 0.81740.011 0.686
+ACMIL 0.799+0.018 0.8754+0.017 0.5414+0.063  0.723+0.028 0.555+0.038 0.818+£0.012  0.719
A(%) +4.7 +10.0 +3.9 -1.5 +2.4 +0.1 +3.3
ViT-S/16 SSL pretrained
GA 0.9144+0.031 0.9454+0.027 0.680+0.051 0.866+0.029 0.595+0.036 0.831£0.022  0.805
+ACMIL 0.954£0.012 0.974+0.012 0.722+£0.030 0.888+0.010 0.662+0.043  0.90140.011 0.850
A(%) +4.0 +2.9 +4.2 +2.2 +6.7 +7.0 +4.5
MHA 0.931+0.032 0.9614+0.017 0.656+0.030 0.850+£0.030 0.619£0.032 0.864+0.013  0.813
+ACMIL 0.936+£0.027 0.973+0.014 0.667£0.059 0.8794+0.028 0.649+0.024 0.876+0.012  0.830
A(%) +0.5 +1.2 +1.1 +2.9 +3.0 +1.2 +1.7

Keeping p = 0.6 or p 0.8 achieves better perfor-
mance: The best performances across the three datasets are
achieved at p = 0.6 and p = 0.8, as shown in the sec-
ond column. Specifically, p = 0.6 achieves the best perfor-
mance on the BRACS dataset, whereas p = 0.8 achieves
the best performance on the other two datasets. In this pa-
per, we set p = 0.6 as the default value.

ACMIL is insensitive to the hyperparameter K: The hy-
perparameter /X exhibits minimal sensitivity, where differ-
ent K values result in a performance difference of less than
1.0% AUC. In practice, setting K to 10 is generally suffi-
cient for achieving near-optimal performance.

D.2. Performance Evaluation against Baseline

To assess the adaptability of our ACMIL to different at-
tention mechanisms, we selected two prominent attention
mechanisms as our baselines. The first is the gated atten-
tion (GA) mechanism [12], employed in approaches like
ABMIL [25], CLAM [34], and DTFD-MIL [56]. The sec-
ond is the multiple head attention (MHA) mechanism [47],
utilized in methods such as TransMIL [43] and IPS trans-
former [4]. The results are presented in Table 4.

With GA as the baseline, ACMIL exhibits a substantial
and comprehensive improvement in performance. All 12
performance metrics show enhancements, with an average
gain of 4.4 points, a minimum increase of 2.2 points, and a
maximum improvement of 8.1 points.

With MHA as the baseline, ACMIL also demonstrates
performance improvements in the majority of terms (i.e.,
11 out of 12 terms), achieving an average improvement of
2.5 points. In comparison to GA, MHA introduces paral-
lel processing (i.e., heads). This modification enables the

13

learning of different visual concepts across heads [8], con-
tributing to a slight attenuation in the improvements brought
by ACMIL.

D.3. More heatmap visualization

Tumor Slide
¥ x

%

Heatmaps of five branches

WSI heatmap

Normal Slide | Heatmaps of five branches

Figure 10. Heatmap visualizations for five attention branches. Dif-

ferent branches specialize in capturing specific features, contribut-
ing to the better interpretability for the bag (final) heatmap.




Heatmap visualizations of five attention branches in
MBA. In Fig. 10, we present the heatmap visualizations for
five attention branches and delve into the effects of these
distinct branches. We’ve chosen two test slides in Came-
lyon16 for this analysis, including one tumor slide and one
normal slide. For the tumor slide, we observe that all five
branches capture the cancerous instances. Notably, the third
and fifth branches successfully capture the entirety of the tu-
mor regions, while the remaining three branches only man-
age to capture a subset of the tumor regions. Addition-
ally, the third branch activates the adipose, and the fifth
branch activates the lymphocytes regions. Overall, the av-
eraged heatmap captures the whole tumor regions, along
with slightly activating some normal regions. For the nor-
mal slide, the first two branches activate instances lying be-
tween adipose and lymphocytes regions. The third branch
predominantly activates adipose tissue, the fourth branch
emphasizes muscle regions, and the fifth branch highlights
lymphocytes regions. Overall, the averaged heatmap acti-
vates all normal regions. This analysis illustrates how the
different branches specialize in capturing specific features,
contributing to a more comprehensive understanding of the
data.
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Figure 11. Heatmap visualizations with bad interpretability. Three
cases indicates that ACMIL’s approach of assigning broader atten-
tion values to a wide range of predictive instances doesn’t consis-
tently enhance interpretability.

Heatmap visualizations with bad interpretability. In Fig.
11, we present three cases (i.e., two tumor slides and one
normal slide) with heatmap visualizations that exhibit poor
interpretability. The first slide is a tumor slide. While
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ACMIL activates a greater number of cancerous instances
than ABMIL (as indicated by the yellow box), it also ac-
tivates some normal instances (visible in the green box).
This mixed activation can potentially mislead experts dur-
ing practical interpretability analysis. The second instance
also concerns a tumor case but with small tumor regions.
ABMIL accurately localizes the tumor regions (see yellow
box). In contrast, ACMIL allocates more attention val-
ues to a broader range of predictive instances, which re-
sults in an inability to precisely locate the tumor regions.
The third case pertains to a normal slide. In contrast to
ABMIL, which provides misleading interpretability by pre-
dominantly focusing on adipose tissue, ACMIL assigns ex-
cessive attention values to lymphocytes regions. Conse-
quently, the heatmap primarily highlights lymphocytes tis-
sue instead of the expected comprehensive representation of
normal tissue.
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Figure 12. Comparison of heatmap visualizations between

MHIM-MIL [45] and ACMIL (Zoom in for best view). ACMIL
performs better on capturing comprehensive predictive instances.

Comparison of heatmap visualization between MHIM-
MIL [45] and ACMIL. In Fig. 12, we present the heatmap
visualizations of MHIM-MIL and ACMIL. For the tumor
slide (first row), MHIM-MIL and ACMIL both capture all
cancerous instances in the tumor region, but MHIM-MIL
activates more normal instances than ACMIL. For the nor-
mal slide (second row), MHIM-MIL predominately acti-
vates adipose, whereas ACMIL activate all normal instances
more uniformly.

D.4. Instance feature analysis for normal slide

In Fig. 13, we present the UMAP visualization [37]
of normal instance features in a typical Camelyon case,
’test_016°. The comparison between ABMIL and ACMIL
is quite evident. ABMIL, with a single attention branch,
activates only a fraction of normal instances. Conversely,
ACMIL utilizes five branches, with each branch special-
izing in capturing specific patterns, resulting in the acti-
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Figure 13. UMAP visualization [37] of instance features in a normal case, Camelyon16 "test_016’. The normal instances exhibit distinct
patterns, making it challenging for a single-branch model like ABMIL to capture them comprehensively. Consequently, ABMIL may
overlook certain instances. In contrast, our ACMIL leverages multiple branches, each adept at capturing specific patterns, enabling ACMIL
to activate a greater number of normal instances. Note that the instance is considered active when its attention value surpasses %

Table 5. Comparison of performance and computational cost re-
quirements between MHIM-MIL and STKIM. We report the auc,
FLOPs, training time per epoch (Time), and peak memory usage
(Mem.) on the CAMELYON-16 (C16) dataset. The flops are mea-
sured with the number of instances of a bag being 1024.

Model Cl6 BRACS LBC FLOPs Time Mem.
ResNet18 ImageNet pretrained
ABMIL 0.790 0.723 0.798  201M 8.0s 0.3G
MHIM-MIL  0.772 0.774 0.816 201IM 20.8s 1.9G
STKIM 0.779 0.789 0.820 201M 8.0s 0.3G
ViT-S/16 SSL pretrained
ABMIL 0.945 0.866 0.831 84M 6.4s 0.2G
MHIM-MIL  0.970 0.865 0.872 84M 16.8s  1.0G
STKIM 0.968 0.873 0.856 84M 6.5s 0.2G

vation of nearly all normal instances. This observation

demonstrates the superior ability of ACMIL to encompass

a broader range of patterns in the data.

D.5. Discussion Combining Performance and Com-
putational Cost

STKIM and MHIM-MIL [45]. We conducted a compre-
hensive comparison between STKIM and MHIM-MIL, fo-
cusing on computational cost and performance, as detailed
in Tab. 5. For the computational cost, STKIM demon-
strates nearly identical training time consumption and GPU
memory usage as the baseline, ABMIL. This similarity
arises because STKIM primarily integrates a sorting algo-
rithm, which does not substantially increase resource re-
quirements. On the other hand, MHIM-MIL introduces a
teacher model while requiring two forward propagations,
leading to significantly higher GPU memory usage and
training time consumption. Due to the masking operator
will be discarded in the evaluation, STKIM and MHIM-

15

Table 6. Comparison of performance, time and memory require-
ments between ABMIL and MBA. We report the auc, the FLOPs,
the training time per epoch (Time), and the peak memory usage
(Mem.) on the CAMELYON-16 dataset (C16). The flops are mea-
sured with the number of instances of a bag being 1024.

Model Cl66 BRACS LBC FLOPs Time Mem.
ResNet18 ImageNet pretrained
ABMIL  0.790 0.723 0.798  201M 8.0s 0.3G
+MBA 0.850 0.797 0818 202M  11.6s 0.3G
ViT-S/16 SSL pretrained
ABMIL  0.945 0.866 0.831 84M 6.4s 0.2G
+MBA 0.973 0.878 0.875 85M 9.3s 0.2G

MIL keep the same evaluation cost (FLOPs) with the AB-
MIL. For the performance, STKIM delivers comparable re-
sults to MHIM-MIL across three datasets and with two pre-
trained backbone models. Notably, STKIM outperforms
MHIM-MIL in four out of six performance metrics while
lagging behind in the remaining two.

MBA. In Tab. 6, we present the comparison of perfor-
mance and computational cost between ABMIL and MBA.
Notably, MBA demonstrates a substantial performance im-
provement over ABMIL. Meanwhile, due to introducing a
small number of parameters, the FLOPs and Memory cost
increases marginally. Otherwise, the inclusion of the newly
introduced diversity loss leads to a notable increase in time
cost.

E. Limitations

Even though our ACMIL is able to improve the model
generalization ability and interprebility of MIL methods for
WSI analysis, it still exist some limitations that are required



to further explore in the future. Firstly, our ACMIL also
will produce heatmap visualization with bad interpretabil-
ity. Intuitively, this also will hurt the model generalization.
To solve this, future work can further elaborate attention
mechanism. Secondly, we find that the better representa-
tions will weaken the requirements for better attention de-
sign. Although we verify the effectiveness of our ACMIL
on one of the currently best feature extraction methods, SSL
pre-training, we still cannot ensure its scalability to the bet-
ter representations.
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