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ABSTRACT

One of the roadblocks to a better understanding of neural networks’ internals is
polysemanticity, where neurons appear to activate in multiple, semantically dis-
tinct contexts. Polysemanticity prevents us from identifying concise, human-
understandable explanations for what neural networks are doing internally. One
hypothesised cause of polysemanticity is superposition, where neural networks
represent more features than they have neurons by assigning features to an over-
complete set of directions in activation space, rather than to individual neurons.
Here, we attempt to identify those directions, using sparse autoencoders to re-
construct the internal activations of a language model. These autoencoders learn
sets of sparsely activating features that are more interpretable and monoseman-
tic than directions identified by alternative approaches, where interpretability is
measured by automated methods. Ablating these features enables precise model
editing, for example, by removing capabilities such as pronoun prediction, while
disrupting model behaviour less than prior techniques. This work indicates that
it is possible to resolve superposition in language models using a scalable, unsu-
pervised method. Our method may serve as a foundation for future mechanistic
interpretability work, which we hope will enable greater model transparency and
steerability.

1 INTRODUCTION

Advances in artificial intelligence (AI) have resulted in the development of highly capable AI sys-
tems that make decisions for reasons we do not understand. This has caused concern that AI systems
that we cannot trust are being widely deployed in the economy and in our lives, introducing a num-
ber of novel risks (Hendrycks et al., 2023), including potential future risks that AIs might deceive
humans in order to accomplish undesirable goals (Ngo et al., 2022). Mechanistic interpretability
seeks to mitigate such risks through understanding how neural networks calculate their outputs, al-
lowing us to reverse engineer parts of their internal processes and make targeted changes to them
(Cammarata et al., 2021; Wang et al., 2022; Elhage et al., 2021).

To reverse engineer a neural network, it is necessary to break it down into smaller units (features)
that can be analysed in isolation. Using individual neurons as these units has had some success (Olah
et al., 2020; Bills et al., 2023), but a key challenge has been that neurons are often polysemantic,
activating for several unrelated types of feature (Olah et al., 2020). Also, for some types of network
activations, such as the residual stream of a transformer, there is little reason to expect features to
align with the neuron basis (Elhage et al., 2023).

Elhage et al. (2022) investigate why polysemanticity might arise and hypothesise that it may result
from models learning more distinct features than there are dimensions in the layer. They call this
phenomenon superposition. Since a vector space can only have as many orthogonal vectors as
it has dimensions, this means the network would form an overcomplete basis of non-orthogonal
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Figure 1: An overview of our method. We a) sample the internal activations of a language model,
either the residual stream, MLP sublayer, or attention head sublayer; b) use these activations to train
a neural network, a sparse autoencoder whose weights form a feature dictionary; c) interpret the
resulting features with techniques such as OpenAI’s autointerpretability scores.

features. Features must be sufficiently sparsely activating for superposition to arise because, without
high sparsity, interference between non-orthogonal features prevents any performance gain from
superposition. This suggests that we may be able to recover the network’s features by finding a set
of directions in activation space such that each activation vector can be reconstructed from a sparse
linear combinations of these directions. This is equivalent to the well-known problem of sparse
dictionary learning (Olshausen & Field, 1997).

Building on Sharkey et al. (2023), we train sparse autoencoders to learn these sets of directions. Our
approach is also similar to Yun et al. (2021), who apply sparse dictionary learning to all residual
stream layers in a language model simultaneously. Our method is summarised in Figure 1 and
described in Section 2.

We then use several techniques to verify that our learned features represent a semantically mean-
ingful decomposition of the activation space. First, we show that our features are on average more
interpretable than neurons and other matrix decomposition techniques, as measured by autointer-
pretability scores (Section 3) (Bills et al., 2023). Next, we show that our features enable less-
disruptive model editing (Section 4). We also show that we are able to pinpoint the features used
for a set task more precisely than other methods (Section 5). Finally, we run case studies on a small
number of features, showing that they are not only monosemantic but also have predictable effects
on the model outputs, and can be used for fine-grained circuit detection. (Section 6).

2 TAKING FEATURES OUT OF SUPERPOSITION WITH SPARSE DICTIONARY
LEARNING

To take network features out of superposition, we employ techniques from sparse dictionary learn-
ing (Olshausen & Field, 1997; Lee et al., 2006). Suppose that each of a given set of vectors
{xi}nvec

i=1 ⊂ Rd is composed of a sparse linear combination of unknown vectors {gj}
ngt
j=1 ⊂ Rd,

i.e. xi =
∑

j ai,jgj where ai is a sparse vector. In our case, the data vectors {xi}nvec
i=1 are internal

activations of a language model, such as Pythia-70M (Biderman et al., 2023), and {gj}
ngt
j=1 are un-

known, ground truth network features. We would like learn a dictionary of vectors, called dictionary
features, {fk}nfeat

k=1 ⊂ Rd where for any network feature gj there exists a dictionary feature fk such
that gj ≈ fk.

To learn the dictionary, we train an autoencoder with a sparsity penalty term on its hidden activations
(Olshausen & Field, 1997). The autoencoder is a neural network with a single hidden layer of size
dhid = Rdin, where din is the dimension of the language model internal activation vectors1, and R is
a hyperparameter that controls the ratio of the feature dictionary size to the model dimension. We
use the ReLU activation function in the hidden layer (Fukushima, 1975). We also use tied weights
for our neural network, meaning the weight matrices of the encoder and decoder are transposes of

1For the residual stream in Pythia-70M, din = 512.
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each other.2 Thus, on input vector x ∈ {xi}, our network produces the output x̂, given by

c = ReLU(Mx+ b) (1)

x̂ = MT c (2)

=

dhid−1∑
i=0

cifi (3)

where M ∈ Rdhid×din and b ∈ Rdhid are our learned parameters, and M is normalised row-wise3.
Our parameter matrix M is our feature dictionary, consisting of dhid rows of dictionary features fi.
The output x̂ is meant to be a reconstruction of the original vector x, and the hidden layer c consists
of the coefficients we use in our reconstruction of x.

Our autoencoder is trained to minimise the loss function

L(x) = ||x− x̂||22︸ ︷︷ ︸
Reconstruction loss

+ α||c||1︸ ︷︷ ︸
Sparsity loss

where α is a hyperparameter controlling the sparsity of the reconstruction. The ℓ1 loss term on c
encourages our reconstruction to be a sparse linear combination of the dictionary features. It can be
shown empirically (Sharkey et al., 2023) and theoretically (Wright & Ma, 2022) that reconstruction
with an ℓ1 penalty can recover the ground-truth features that generated the data. For the further
details of our training process, see Appendix B.

3 INTERPRETING DICTIONARY FEATURES

3.1 INTERPRETABILITY AT SCALE

Having learned a set of dictionary features, we want to understand whether our learned features dis-
play reduced polysemanticity, and are therefore more interpretable. To do this in a scalable manner,
we require a metric to measure how interpretable a dictionary feature is. We use the automated
approach introduced in Bills et al. (2023) because it scales well to measuring interpretability on the
thousands of dictionary features our autoencoders learn. In summary, the autointerpretability proce-
dure takes samples of text where the dictionary feature activates, asks a language model to write a
human-readable interpretation of the dictionary feature, and then prompts the language model to use
this description to predict the dictionary feature’s activation on other samples of text. The correlation
between the model’s predicted activations and the actual activations is that feature’s interpretability
score. See Appendix A and Bills et al. (2023) for further details.

We show descriptions and top-and-random scores for five dictionary features from the layer 1 resid-
ual stream in Table 1. The features shown are the first five under the (arbitrary) ordering in the
dictionary.

3.2 SPARSE DICTIONARY FEATURES ARE MORE INTERPRETABLE THAN BASELINES

We assess our interpretability scores against a variety of alternative methods for finding dictionaries
of features in language models. In particular, we compare interpretability scores on our dictionary
features to those produced by a) the default basis, b) random directions, c) Principal Component
Analysis (PCA), and d) Independent Component Analysis (ICA). For the random directions and for

2We use tied weights because (a) they encode our expectation that the directions which detect and define the
feature should be the same or highly similar, (b) they halve the memory cost of the model, and (c) they remove
ambiguity about whether the learned direction should be interpreted as the encoder or decoder direction. They
do not reduce performance when training on residual stream data but we have observed some reductions in
performance when using MLP data.

3Normalisation of the rows (dictionary features) prevents the model from reducing the sparsity loss term
||c||1 by increasing the size of the feature vectors in M .
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Feature Description (Generated by GPT-4) Interpretability Score
1-0000 parts of individual names, especially last names. 0.33
1-0001 actions performed by a subject or object. -0.11
1-0002 instances of the letter ‘W’ and words beginning with ‘w’. 0.55
1-0003 the number ‘5’ and also records moderate to low activa-

tion for personal names and some nouns.
0.57

1-0004 legal terms and court case references. 0.19

Table 1: Results of autointerpretation on the first five features found in the layer 1 residual stream.
Autointerpretation produces a description of what the feature means and a score for how well that
description predicts other activations.

Figure 2: Average top-and-random autointerpretability score of our learned directions in the residual
stream, compared to a number of baselines, using 150 features each. Error bars show 95% confi-
dence intervals around means. The feature dictionaries used here were trained for 10 epochs using
α = .00086 and R = 2.

the default basis in the residual stream, we replace negative activations with zeros so that all feature
activations are nonnegative 4.

Figure 2 shows that our dictionary features are far more interpretable by this measure than dictionary
features found by comparable techniques. We find that the strength of this effect declines as we move
through the model, being comparable to ICA in layer 4 and showing minimal improvement in the
final layer.

This could indicate that sparse autoencoders work less well in later layers but also may be connected
to the difficulties of automatic interpretation, both because by building on earlier layers, later features
may be more complex, and because they are often best explained by their effect on the output. Bills
et al. (2023) showed that GPT-4 is able to generate explanations that are very close to the average
quality of the human-generated explanations given similar data. But they also showed that current
LLMs are limited in the kinds of patterns that they can find, sometimes struggling to find patterns
that center around next or previous tokens rather than the current token, and in the current protocol
are unable to verify outputs by looking at changes in output or other data.

We do show, in Section 6, a method to see a feature’s causal effect on the output logits by hand, but
we currently do not send this information to the language model for hypothesis generation. The case

4For PCA we use an online estimation approach and run the decomposition on the same quantity of data we
used for training the autoencoders. For ICA, due to the slower convergence times, we run on only 2GB of data,
approximately 4 million activations for the residual stream and 1m activations for the MLPs.
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studies section also demonstrates a closing parenthesis dictionary feature, showing that these final
layer features can give insight into the model’s workings.

See Appendix C for a fuller exploration of different learned dictionaries through the lens of auto-
matic interpretability, looking at both the MLPs and the residual stream.

4 DICTIONARY FEATURES ENABLE SURGICAL CONCEPT ERASURE

Figure 3: Comparison of concept erasure methods applied to Pythia-410M at various layers. We
show the mean edit magnitude (top) and the ability of the altered model to complete the pronoun-
prediction task (bottom). Lower is better in both plots. The horizontal ‘Base Perf.’ line shows the
performance of the unedited model, and the horizontal ‘Majority’ line shows the accuracy of random
guessing.

To demonstrate that our dictionary features correspond to functional units in the network, we turn to
concept erasure. Concept erasure is the task of removing a specified feature from a learned represen-
tation (Belrose et al., 2023). Here, we assess each variant of concept erasure by how much our edits
hinder the ability of our models to predict a certain concept while aiming to otherwise minimally
disrupt model behaviour. On this task, we are able to outperform methods such as LEACE (Belrose
et al., 2023) that hide a concept from arbitrary linear probes, while still using single-rank ablations,
which we claim is evidence that our linear features better represent the underlying computational
units of the model.

4.1 ERASURE ON THE ‘GENDER PREDICTION BY NAME’ TASK

We evaluate our approach on the pronoun prediction task, using the ‘Gender by Name’ dataset (mis,
2020). In this task, we few-shot prompt Pythia-410M to complete sentences of the form “My name
is {name} and my gender is {gender}.” with the stereotypical gender for a given name. We restrict
ourselves to male and female genders for simplicity and measure language model predictive ability
via the true positive rate of a classifier with log probabilities equal to the model output logits of the
corresponding tokens.

The feature dictionaries we used were trained with ℓ1 penalty coefficient α = 8e− 4 and dictionary
ratio R = 4. Note that in contrast to Pythia-70M, Pythia-410M has 24 layers and residual stream
dimension din = 1024. In this section, we perform full-rank ablations of dictionary features by
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Figure 4: We find that the erasure ability of dictionary feature projections outperform LEACE and
difference-in-means projections when transferred to a related task, both in terms of erasure precision
as measured by mean edit magnitude (top) and their ability to harm model performance on the task
(bottom). Lower is better in both plots.

projecting model activations to the orthogonal complement of that feature. In other words, we
prevent the model activations from activating in that direction.

To select dictionary features for ablation, we rank them by their ability to hide gender information
from a linear probe, as in Ravfogel et al. (2022), and then evaluate the top four dictionary features
on their performance at the ‘Gender by Name’ task on a 32-element ‘train’ dataset distinct from the
test dataset.

We compare our approach to two benchmarks: LEACE (Belrose et al., 2023) and difference-in-
means projections. The difference-in-means projection Pu is defined as

u =
1

|M|
∑
v∈M

v − 1

|F|
∑
w∈F

w

û =
u

∥u∥
Pu(x) = x− ⟨û,x⟩û

where M and F are the residual stream activations from the layer being studied corresponding to
male and female prompts, respectively. In other words, difference-in-means projection finds the
difference u between the centroids of each gender class, and projects each activation x onto the
subspace orthogonal to that direction.

We apply erasure interventions to each layer individually, and we assume activations at different
token positions are i.i.d. for the purposes of LEACE and difference-in-means projections.

We find single features in early layers of the model that, when ablated, outperform LEACE and
difference-in-means projections in model prediction accuracy removal (Figures 3 and 4) while hav-
ing a lower disruption to model behaviour overall, as measured by KL-divergence on the training
distribution (Appendix D).
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4.2 TRANSFER TO PRONOUN PREDICTION

In order to test for some limited generality in using our learned features for erasure, we test the
ability for the features in the previous section to generalise to erasure on a different task. We instead
few-shot prompt the model to perform completions of the form “{name} went to the store, where
{pronoun} bought an {object}.”, choosing the stereotypical pronoun for a given name. We show
in Figure 4 that the highest-ranked features for gender prediction often permit good erasure on the
pronoun prediction task, while methods such as difference-in-means projection and LEACE fail.

5 IDENTIFYING CAUSALLY-RELEVANT DICTIONARY FEATURES FOR
INDIRECT OBJECT IDENTIFICATION

We use automated circuit discovery methods (Conmy et al., 2023) to identify dictionary features that
are causally relevant for the Indirect Object Identification (IOI) task (Wang et al., 2022). Because
our dictionary features are more monosemantic than features identified by other techniques like
PCA, we are able to better localize the dictionary features that are causally responsible for model
behaviour on the IOI task.

5.1 ADAPTING ACTIVATION PATCHING TO DICTIONARY FEATURES

We apply activation patching (Wang et al., 2022) to identify the dictionary features in a given layer
responsible for some specified behaviour. To do this, we start with some counterfactual corrupted
data X̄i as in (Wang et al., 2022) and identify the minimum number of interventions needed to
reproduce the behaviour of the model when run on the uncorrupted data. In practice, we use a
variant of automated circuit discovery (ACDC) (Conmy et al., 2023) in which we ablate dictionary
features one at a time until the marginal ablation decreases performance beyond the threshold τ .
Following Conmy et al. (2023), we measure behaviour reconstruction with KL-divergence from
the model’s uncorrupted behavior, and we vary the threshold τ to estimate the tradeoff between

Figure 5: We find a very small number of dictionary features that are causally responsible for the
uncorrupted behaviour on the IOI task. Increasing the sparsity of the learned dictionaries improves
our ability to precisely locate the responsible dictionary features at the cost of lower overall recon-
struction accuracy.
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intervention precision and reconstruction of the uncorrupted behaviour. We intervene on activations
with the formula

x′
i = x̄i +

∑
j∈F

(ci,j − c̄i,j)fj

where x′
i is the edited activation, F is the set of uncorrupted dictionary features, x̄i is the trans-

former’s embedding of the corrupted datapoint X̄i, and c̄i,j and ci,j are the activations of our au-
toencoders on the corrupted and uncorrupted datapoints respectively. We perform interventions on
the residual stream at layer 12 of Pythia-410M and compare with an analogous intervention using
PCA.

5.2 PRECISE LOCALISATION OF IOI DICTIONARY FEATURES

As shown in Figure 5, we find that dictionaries with a larger ℓ1 sparsity coefficient α are able to
represent the relevant information for the IOI task with far fewer dictionary features at the cost of
having lower overall reconstruction accuracy. This lower reconstruction accuracy entails a larger
corrupted residual, which appears in Figure 5 as a larger minimum KL-divergence. We are able
to restrict uncorrupted information to a very small number of directions without disrupting model
behaviour.

6 CASE STUDIES

In this section, we investigate individual dictionary features, highlighting several that appear to cor-
respond to a single human-understandable explanation (i.e., that are monosemantic). We perform
three analyses of our dictionary features to determine their semantic meanings: (1) Input: We iden-
tify which tokens activate the dictionary feature and in which contexts, (2) Output: We determine
how ablating the feature changes the output logits of the model, and (3) Intermediate features: We
identify the dictionary features in previous layers that cause the analysed feature to activate.

6.1 INPUT: DICTIONARY FEATURES ARE HIGHLY MONOSEMANTIC

We first analyse our dictionary directions by checking what text causes them to activate. An idealised
monosemantic dictionary feature will only activate on text corresponding to a single real-world
feature, whereas a polysemantic dictionary feature might activate in unrelated contexts.

Figure 6: Histogram of token counts for dictionary feature 556. (Left) For all datapoints that activate
dictionary feature 556, we show the count of each token in each activation range. The majority of
activations are apostrophes, particularly for higher activations. Notably the lower activating tokens
are conceptually similar to apostrophes, such as other punctuation. (Right) We show which token
predictions are suppressed by ablating the feature, as measured by the difference in logits between
the ablated and unablated model. We find that the token whose prediction decreases the most is the
“s” token. Note that there are 12k logits negatively effected, but we set a threshold of 0.1 for visual
clarity.

8



To better illustrate the monosemanticity of certain dictionary features, we plot the histogram of
activations across token activations. This technique only works for dictionary features that activate
for a small set of tokens. We find dictionary features that only activate on apostrophes (Figure
6); periods; the token “ the”; and newline characters. The apostrophe feature in Figure 6 stands
in contrast to the default basis for the residual stream, where the dimension that most represents
an apostrophe is displayed in Figure 14 in Appendix E.1; this dimension is polysemantic since it
represents different information at different activation ranges.

Although the dictionary feature discussed in the previous section activates only for apostrophes,
it does not activate on all apostrophes. This can be seen in Figures 17 and 18 in Appendix E.2,
showing two other apostrophe-activating dictionary features, but for different contexts (such as
“[I/We/They]’ll” and “[don/won/wouldn]’t”). Details for how we searched and selected for dic-
tionary features can be found in Appendix E.3.

6.2 OUTPUT: DICTIONARY FEATURES HAVE INTUITIVE EFFECTS ON THE LOGITS

In addition to looking at which tokens activate the dictionary feature, we investigate how dictionary
features affect the model’s output predictions for the next token by ablating the feature from the
residual stream5. If our dictionary feature is interpretable, subtracting its value from the residual
stream should have a logical effect on the predictions of the next token. We see in Figure 6 (Right)
that the effect of removing the apostrophe feature mainly reduces the logit for the following “s”. This
matches what one would expect from a dictionary feature that detects apostrophes and is used by
the model to predict the “s” token that would appear immediately after the apostrophe in possessives
and contractions like “let’s”.

6.3 INTERMEDIATE FEATURES: DICTIONARY FEATURES ALLOW AUTOMATIC CIRCUIT
DETECTION

We can also understand dictionary features in relation to the upstream and downstream dictionary
features: given a dictionary feature, which dictionary features in previous layers cause it to activate,
and which dictionary features in later layers does it cause to activate?

To automatically detect the relevant dictionary features, we choose a target dictionary feature such
as layer 5’s feature for tokens in parentheses which predicts a closing parentheses (Figure 7). For
this target dictionary feature, we find its maximum activation M across our dataset, then sample 20
contexts that cause the target feature to activate in the range [M/2,M ]. For each dictionary feature
in the previous layer, we rerun the model while ablating this feature and sort the previous-layer
features by how much their ablation decreased the target feature. If desired, we can then recursively
apply this technique to the dictionary features in the previous layer with a large impact. The results
of this process form a causal tree, such as Figure 7.

Being the last layer, layer 5’s role is to output directions that directly correspond to tokens in the un-
embedding matrix. In fact, when we unembed feature 52027, the top-tokens are all closing parenthe-
ses variations. Intuitively, previous layers will detect all situations that precede closing parentheses,
such as dates, acronyms, and phrases.

5Specifically we use less-than-rank-one ablation.
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Figure 7: Circuit for the closing parenthesis dictionary feature, with human interpretations of each feature shown. Edge thickness indicates the strength of the
causal effect between dictionary features, as measured by ablations. Many dictionary features across layers correspond to similar real-world features and often
point in similar directions in activation space, as measured by cosine similarity. For instance, dictionary features 0 3662 and 1 333 both detect “(” and have a
cosine similarity of 0.8, even though the diagram does not show them having a connection. This is an artifact of our automatic circuit-detection algorithm only
back-chaining from the most relevant dictionary features found.

10



7 DISCUSSION

7.1 LIMITATIONS AND FUTURE WORK

Ultimately, we would like to find all of the network features used by the language model. At the
moment, our dictionary features appear interpretable and causally important; however, we do not
achieve ∼0 reconstruction loss, indicating that we have not fully captured the model’s internal rep-
resentations. We can also confirm this by measuring the perplexity of the model’s predictions when a
layer is substituted with its reconstruction. For instance, replacing layer 2’s activations with our own
increases the perplexity from 25 to 40. To this end, we would like to explore various other sparse
autoencoder architectures and train on KL-divergence in place of reconstruction loss. Future efforts
could also try to improve feature dictionary discovery by incorporating the weights of the model or
dictionary features found in adjacent layers into the training process. Additionally, we were not able
to learn very interpretable dictionaries for the middle of MLP activations (after the nonlinearity) and
would like to pursue various methods to correct for this.

Our current methods for training sparse autoencoders are best suited to the residual stream, though
there is evidence that they may be applicable to the MLPs. We would be excited about future work
investigating what changes can be made to better understand the computations performed by the
attention heads and MLP layers, each of which poses different challenges.

We would like to expand our automatic circuit-detection algorithm to include dictionaries trained on
the outputs of the MLP and attention units to locate the specific computations of dictionary features.
With this addition, and hopefully improved dictionaries in general, we would like to explore circuits
found using learned dictionary features to study adversarial attacks, LLMs playing Othello/Chess,
in-context learning, and preference/reward models.

We would like to study how network features develop across training by looking at feature formation
across model checkpoints. We hope this will inform theories of deep learning by having non-toy,
concrete examples of network feature formation.

7.2 CONCLUSION

Sparse autoencoders are a scalable, unsupervised approach to disentangling language model network
features from superposition. We have demonstrated that the dictionary features they learn are more
interpretable by autointerpretability, are better for performing precise model steering, and are more
monosemantic than comparable methods.

The ability to find these dictionary features gives us a new, fully unsupervised tool to investigate
model behaviour, allows us to make targeted edits, and can be trained using a manageable amount
of computing power.

An ambitious dream in the field of interpretability is enumerative safety (Elhage et al., 2022): the
ability to enumerate all features used by a network and thus understand the full set of computa-
tions that a model implements. If this were achieved, it could permit stronger guarantees that a
model either is not able or is not inclined to perform certain dangerous actions, such as deception
or advanced bioengineering. While this remains an ambition for now, dictionary learning hopefully
marks a small step towards making it possible.

In summary, sparse autoencoders bring a new tool to the interpretability and editing of language
models, which we hope others can build upon. The potential for innovations and applications is
vast, and we’re excited to see what happens next.
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A AUTOINTERPRETATION PROTOCOL

The autointerpretability process consists of five steps and yields both an interpretation and an au-
tointerpretability score:

1. On each of the first 50,000 lines of OpenWebText, take a 64-token sentence-fragment, and
measure the feature’s activation on each token of this fragment. Feature activations are
rescaled to integer values between 0 and 10.

2. Take the 20 fragments with the top activation scores and pass 5 of these to GPT-4, along
with the rescaled per-token activations. Instruct GPT-4 to suggest an explanation for when
the feature (or neuron) fires, resulting in an interpretation.

3. Use GPT-3.56 to simulate the feature across another 5 highly activating fragments and 5
randomly selected fragments (with non-zero variation) by asking it to provide the per-token
activations.

4. Compute the correlation of the simulated activations and the actual activations. This corre-
lation is the autointerpretability score of the feature. The texts chosen for scoring a feature
can be random text fragments, fragments chosen for containing a particularly high activa-
tion of that feature, or an even mixture of the two. We use a mixture of the two unless
otherwise noted, also called ‘top-random’ scoring.

5. If, amongst the 50,000 fragments, there are fewer than 20 which contain non-zero variation
in activation, then the feature is skipped entirely.

Although the use of random fragments in Step 4 is ultimately preferable given a large enough sample
size, the small sample sizes of a total of 640 tokens used for analysis mean that a random sample
will likely not contain any highly activating examples for all but the most common features, making
top-random scoring a desirable alternative.

6While the process described in Bills et al. (2023) uses GPT-4 for the simulation step, we use GPT-3.5.
This is because the simulation protocol requires the model’s logprobs for scoring, and OpenAI’s public API for
GPT-3.5 (but not GPT-4) supports returning logprobs.
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B SPARSE AUTOENCODER TRAINING AND HYPERPARAMETER SELECTION

To train the sparse autoencoder described in Section 2, we use data from the Pile (Gao et al., 2020), a
large, public webtext corpus. We run the model that we want to interpret over this text while caching
and saving the activations at a particular layer. These activations then form a dataset, which we use
to train the autoencoders. The autoencoders are trained with the Adam optimiser with a learning rate
of 1e-3 and are trained on 10-50M activation vectors for 1-3 epochs, with larger dictionaries taking
longer to converge.

When varying the hyperparameter α which controls the importance of the sparsity loss term, we
consistently find a smooth tradeoff between the sparsity and accuracy of our autoencoder, as shown
in Figure 8. The lack of a ‘bump’ or ‘knee’ in these plots provides some evidence that there is not a
single correct way to decompose activation spaces into a sparse basis, though to confirm this would
require many additional experiments. Figure B shows the convergence behaviour of a set of models
with varying α over multiple epochs.

Figure 8: The tradeoff between the average number of features active and the proportion of variance
that is unexplained for the MLP at layer 0.

C FURTHER AUTOINTERPRETATION RESULTS

C.1 INTERPRETABILITY IS CONSISTENT ACROSS DICTIONARY SIZES

We find that larger interpretability scores of our feature dictionaries are not limited to overcomplete
dictionaries (where the ratio, R, of dictionary features to model dimensions is > 1), but occurs
even in dictionaries that are smaller than the underlying basis, as shown in Figure 10. These small
dictionaries are able to reconstruct the activation vectors less accurately, so with each feature being
similarly interpretable, the larger dictionaries will be able to explain more of the overall variance.

C.2 HIGH INTERPRETABILITY SCORES ARE NOT AN ARTEFACT OF TOP SCORING

A possible concern is that the autointerpretability method described in Section 3 combines top acti-
vating fragments (which are usually large) with random activations (which are usually small), mak-
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Figure 9: The tradeoff between sparsity and unexplained variance in our reconstruction. Each series
of points is a sweep of the α hyperparameter, trained for the number of epochs given in the legend.

Figure 10: Comparison of average interpretability scores across dictionary sizes. All dictionaries
were trained on 20M activation vectors obtained by running Pythia-70M over the Pile with α =
.00086.
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Figure 11: Random-only interpretability scores across each layer, a measure of how well the inter-
pretation of the top activating cluster is able to explain the entire range of activations.

ing it relatively easy to identify activations. Following the lead of Bills et al. (2023), we control for
this by recomputing the autointerpretation scores by modifying Step 3 using only randomly selected
fragments. With large sample sizes, using random fragments should be the true test of our ability
to interpret a potential feature. However, the features we are considering are heavy-tailed, so with
limited sample sizes, we should expect random samples to underestimate the true correlation.

In Figure 11 we show autointerpretability scores for fragments using only random fragments. Match-
ing Bills et al. (2023), we find that random-only scores are significantly smaller than top-and-random
scores, but also that our learned features still consistently outperform the baselines, especially in the
early layers. Since our learned features are more sparse than the baselines and thus, activate less on a
given fragment, this is likely to underestimate the performance of sparse coding relative to baselines.

An additional potential concern is that the structure of the autoencoders allows them to be sensitive
to less than a full direction in the activation space, resulting in an unfair comparison. We show in
Appendix G that this is not the source of the improved performance of sparse coding.

While the residual stream can usually be treated as a vector space with no privileged basis (a basis in
which we would expect changes to be unusually meaningful, such as the standard basis after a non-
linearity in an MLP), it has been noted that there is a tendency for transformers to store information
in the residual stream basis(Dettmers et al., 2022), which is believed to be caused by the Adam
optimiser saving gradients with finite precision in the residual basis(Elhage et al., 2023). We do not
find residual stream basis directions to be any more interpretable than random directions.

C.3 INTERPRETING THE MLP SUBLAYER

Our approach of learning a feature dictionary and interpreting the resulting features can, in principle,
be applied to any set of internal activations of a language model, not just the residual stream. Ap-
plying our approach to the MLP sublayer of a transformer resulted in mixed success. Our approach
still finds many features that are more interpretable than the neurons. However, our architecture also
learns many dead features, which never activate across the entire corpus. In some cases, there are so
many dead features that the set of living features does not form an overcomplete basis. For example,
in a dictionary with twice as many features as neurons, less than half might be active enough to
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Figure 12: Top-and-random and random-only interpretability scores for across each MLP layer,
using an ℓ1 coefficient α = 3.2e− 4 and dictionary size ratio R = 1.

perform automatic interpretability. The exceptions to this are the early layers, where a large fraction
of them are active.

For learning features in MLP layers, we find that we retain a larger number of features if we use a
different matrix for the encoder and decoder, so that Equations 1 and 2 become

c = ReLU(Mex+ b) (4)

x̂ = MT
d c (5)

We are currently working on methods to overcome this and find truly overcomplete bases in the
middle and later MLP layers.

C.4 INTERPRETABILITY SCORES CORRELATE WITH KURTOSIS AND SKEW OF ACTIVATION

It has been shown that the search for sparse, overcomplete dictionaries can be reformulated in terms
of the search for directions that maximise the ℓ4-norm (Qu et al., 2019).

We offer a test of the utility of this by analysing the correlation between interpretability and a number
of properties of learned directions. We find that there is a correlation of 0.19 and 0.24 between the
degree of positive skew and kurtosis respectively that feature activations have and their top-and-
random interpretability scores, as shown in Table 2.

Moment Correlation with top-random interpretability score
Mean -0.09

Variance 0.02
Skew 0.20

Kurtosis 0.15

Table 2: Correlation of interpretability score with feature moments across residual stream results,
all layers, with dictionary size ratios R ∈ {0.5, 1, 2, 4, 8}.

This also accords with the intuitive explanation that the degree of interference due to other active
features will be roughly normally distributed by the central limit theorem. If this is the case, then
features will be notable for their heavy-tailedness.

This also explains why Independent Component Analysis (ICA), which maximises the non-
Gaussianity of the found components, is the best performing of the alternatives that we considered.

D MEASURING THE DISRUPTIVENESS OF OUR CONCEPT ERASURE

We measure the disruption to model behaviour by calculating the KL-divergence of the ablated
model from the base model on the first 10,000 sequences from the Pile dataset (Gao et al., 2020).
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We find that erasing the relevant dictionary features causes significantly less KL-divergence than
difference-in-means projection or LEACE (Figure 13).

Figure 13: KL-divergence of the ablated model from the base model on the Pile, versus the layer the
concept erasure intervention is performed at. The last datapoint for the difference-in-means edit has
been ommitted as it is multiple orders of magnitude larger than all other datapoints.

E QUALITATIVE FEATURE ANALYSIS

E.1 RESIDUAL STREAM BASIS

Figure 14 gives a token activation histogram of the residual stream basis. Connecting this residual
stream dimension to the apostrophe feature from Figure 6, this residual dimension was the 10th
highest dimension read from the residual stream by our feature7.

Figure 14: Histogram of token counts in the neuron basis. Although there are a large fraction of
apostrophes in the upper activation range, this only explains a very small fraction of the variance for
middle-to-lower activation ranges.

7The first 9 did not have apostrophes in their top-activations like dimension 21.
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E.2 EXAMPLES OF LEARNED FEATURES

Other features are shown in Figures 15, 16, 17, and 18.

Figure 15: ‘If’ feature in coding contexts

Figure 16: ‘Dis’ token-level feature showing bigrams, such as ‘disCLAIM’, ‘disclosed’, ‘disor-
dered’, etc.

Figure 17: Apostrophe feature in “I’ll”-like contexts.

E.3 FEATURE SEARCH DETAILS

We searched for the apostrophe feature using the sentence “ I don’t know about that. It is now up to
Dave”’, and seeing which feature (or residual stream dimension) activates the most for the last apos-
trophe token. The top activating feature in our dictionary was an outlier dimension feature (i.e., a
feature direction that mainly reads from an outlier dimension of the residual stream), the apostrophes
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Figure 18: Apostrophe feature in “don’t”-like contexts.

after O (and predicted O’Brien, O’Donnell, O’Connor, O’clock, etc), then the apostrophe-preceding-
s feature.

For the residual basis dimension, we searched for max and min activating dimensions (since the
residual stream can be both positive and negative), where the top two most positive dimensions were
outlier dimensions, the top two negative dimensions were our displayed one and another outlier
dimension, respectively.

E.4 FAILED INTERPRETABILITY METHODS

We attempted a weight-based method going from the dictionary in layer 4 to the dictionary in layer
5 by multiplying a feature by the MLP and checking the cosine similarity with features in layer 5.
There were no meaningful connections. Additionally, it’s unclear how to apply this to the Attention
sublayer since we’d need to see which position dimension the feature is in. We expected this failed
by going out of distribution.

F NUMBER OF ACTIVE FEATURES

Figure 19: The number of features that are active, defined as activating more than 10 times across
10M datapoints, changes with sparsity hyperparamter α and dictionary size ratio R.

In Figure 19 we see that, for residual streams, we consistently learn dictionaries that are at least 4x
overcomplete before some features start to drop out completely, with the correct hyperparameters.
For MLP layers you see large numbers of dead features even with hyperparameter α = 0. These
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Figure 20: Autointerpretation scores across layers for the residual stream, including top-K baselines
for ICA and PCA.

figures informed the selection of α = 8.6e−4 and α = 3.2e−4 that went into the graphs in Section
3 for the residual stream and MLP respectively. Due to the large part of the input space that is never
used due to the non-linearity, it is much easier for MLP dictionary features to become stuck at a
position where they hardly ever activate. In future we plan to reinitialise such ‘dead features’ to
ensure that we learn as many useful dictionary features as possible.

G TOP K COMPARISONS

As mentioned in Section 3, the comparison directions learnt by sparse coding and those in the
baselines are not perfectly even. This is because, for example, a PCA direction is active to an entire
half-space on one side of a hyperplane through the origin, whereas a sparse coding feature activates
on less than a full direction, being only on the far side of a hyperplane that does not intersect the
origin. This is due to the bias applied before the activation, which is, in practice, always negative.
To test whether this difference is responsible for the higher scores, we run a variant of PCA and ICA
in which we have a fixed number of directions, K, which can be active for any single datapoint. We
set this K to be equal to the average number of active features for a sparse coding dictionary with
ratio R = 1 and α = 8.6e− 4 trained on the layer in question. We compare the results in Figure 20,
showing that this change does not explain more than a small fraction of the improvement in scores.
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