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Abstract

Object detection (OD) in computer vision has made signif-
icant progress in recent years, transitioning from closed-set
labels to open-vocabulary detection (OVD) based on large-
scale vision-language pre-training (VLP). However, current
evaluation methods and datasets are limited to testing gener-
alization over object types and referral expressions, which do
not provide a systematic, fine-grained, and accurate bench-
mark of OVD models’ abilities. In this paper, we propose
a new benchmark named OVDEval, which includes 9 sub-
tasks and introduces evaluations on commonsense knowl-
edge, attribute understanding, position understanding, object
relation comprehension, and more. The dataset is meticu-
lously created to provide hard negatives that challenge mod-
els’ true understanding of visual and linguistic input. Ad-
ditionally, we identify a problem with the popular Average
Precision (AP) metric when benchmarking models on these
fine-grained label datasets and propose a new metric called
Non-Maximum Suppression Average Precision (NMS-AP) to
address this issue. Extensive experimental results show that
existing top OVD models all fail on the new tasks except
for simple object types, demonstrating the value of the pro-
posed dataset in pinpointing the weakness of current OVD
models and guiding future research. Furthermore, the pro-
posed NMS-AP metric is verified by experiments to provide a
much more truthful evaluation of OVD models, whereas tra-
ditional AP metrics yield deceptive results. Data is available
at https://github.com/om-ai-lab/OVDEval

Introduction
Open vocabulary detection (OVD) models have experienced
rapid development in recent years, with numerous innova-
tive techniques being introduced to the field. Novel mod-
els such as GLIP (Li et al. 2022b), Grounding DINO (Liu
et al. 2023) and OmDet (Zhao et al. 2022a) have introduced
new vision-language learning methods such as modeling de-
tection as visual grounding (Kamath et al. 2021; Li et al.
2022b), pre-training with coarse image-text pairs (Dou et al.
2022), and multi-task learning with a variety of detection
tasks (Zhao et al. 2022a).

As a result, for the first time, we can achieve strong
zero-shot object detection (OD) on popular datasets such as
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COCO (Lin et al. 2014), even surpassing the performance
of some of the supervised methods (Liu et al. 2023). Users
can simply use natural language to specify the desired tar-
gets and OVD models can detect the described targets on
the fly, which opens doors for many new applications such
as interactive image-editing (Shen et al. 2023), Augmented
Reality (Li et al. 2023) and robotics (Shah et al. 2023).

Meanwhile, current common approaches to evaluate OVD
models include zero-shot/few-shot testing on OD dataset
with common objects like COCO (Lin et al. 2014), OD
dataset with long-tail objects like LVIS (Gupta, Dollar, and
Girshick 2019), grounding such as Flickr30K (Plummer
et al. 2015) and referral expression comprehension (REC)
such as RefCOCO (Yu et al. 2016). These datasets were
challenging for traditional OD research, but no longer serve
as a challenging enough benchmark for future OVD meth-
ods for the following reasons:
• Lack of systematic probing of model’s generalization

ability: An ideal OVD model should be able to under-
stand the fine-grained semantics in the language prompt
and align the language with visual features. Thus, it is
required to probe the OVD model from various linguistic
aspects such as object type, visual attributes, object rela-
tionship, etc., to quantify an OVD model’s generalization
to various degrees of prompt complexity.

• Lack of hard negative for real-world usage: existing
grounding and REC data assume the text prompt is paired
with the image. The OVD model is only required to lo-
calize the entities mentioned in the caption without the
need to discriminate against hard negatives. However,
real-world usages command an OVD model to detect de-
scribed object without knowing if the caption is related
to the image at all.

To address the above issues, this paper introduces OVDE-
val to provide a comprehensive evaluation of OVD models
and test their robustness against hard negatives. OVDEval
is inspired by behavioral testing (Ribeiro et al. 2020; Zhao
et al. 2022b), and consists of 9 large datasets that cover 6 lin-
guistic aspects: object, proper noun, attribute, position, rela-
tionship, and negation. All of the data annotations are care-
fully annotated by human experts to guarantee data quality.
Additionally, these sub-datasets are meticulously crafted to
ensure that all negative labels are hard. As a result, OVDE-
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val is able to rigorously test a model’s true understanding of
a given aspect, preventing them from achieving high scores
on a particular dimension by taking advantage of data bias.

Besides the proposed dataset, this work also proposes a
new evaluation metric named Non-Maximum Suppression
Average Precision (NMS-AP). We identifies the The Inflated
AP Problem where even with high-quality hard negatives,
a poor OVD model can still achieve a deceptive high AP
score due to limitations on the calculation process of AP. The
proposed NMS-AP is able to effectively resolve the Inflated
AP Problem issue and offers a truthful evaluation of OVD
models.

We compared six strong baseline models on the proposed
OVDEval dataset. Experimental results show that the current
state-of-the-art (SOTA) OVD models only achieve strong re-
sults in simple object detection, and performance drop sig-
nificantly on visual attribute understanding, commonsense
knowledge and etc. This shows the significance to have a
comprehensive and truthful benchmark to reveal the weak-
ness of SOTA systems and guides the direction of future im-
provement. Analysis results also confirm the effectiveness of
the proposed NMS-AP metric, whereas the conventional AP
score is 30% higher than the model’s actual performance.
Further analysis indicates that the current OVD model is
only able to detect object types reliably and shows how OVD
models can deceive conventional AP metrics by predicting
multiple bounding boxes for each potential target object.

The contributions of our work are summarized as follows:
• We introduce the first OVD evaluation benchmark that

comprehensively tests model abilities across six linguis-
tic aspects with complex language prompts and well-
designed hard negatives.

• We identify the inflated AP problem that applies to any
OVD model with traditional AP metric.

• We propose NMS-AP, a novel evaluation metric that ad-
dresses the inflated AP score problem associated with
traditional AP and we show NMS-AP provides a more
accurate evaluation of OVD models’ performance when
dealing with fine-grained described detection.

• We show extensive experiment results that reveal the lim-
itations of current SOTA OVD models and verify the ef-
fectiveness of the proposed metric.

Related Work
Progression from fixed labels to open vocabulary ex-
pressions: Traditional object detectors, such as Faster R-
CNN (Ren et al. 2015) and YOLO (Redmon et al. 2016),
rely on a closed-set vocabulary and are trained on datasets
like COCO (Lin et al. 2014) and Pascal VOC (Hoiem, Div-
vala, and Hays 2009) with predefined categories.

Over time, the number of labels increased, with Ob-
ject365 (Shao et al. 2019) introducing 365 labels and
LVIS (Gupta, Dollar, and Girshick 2019) surpassing a thou-
sand. Also, datasets like ODinW (Li et al. 2022a) focus on
wilderness objects with 35 different domains. V3Det (Wang
et al. 2023) further broadened object detection capabilities
across an extensive range of categories, paving the way
for OVD. In addition to object detection, a growing body

of research is dedicated to referral expression comprehen-
sion (REC) and visual grounding. REC focuses on identi-
fying objects based on textual descriptions provided. No-
table datasets in this area include RefCOCO (Yu et al. 2016),
PhraseCut (Wu et al. 2020), Flickr30K (Plummer et al.
2015) and Visual Genome (Krishna et al. 2017). The De-
scribed Object Detection (DOD) introduced recently, com-
bines the principles of object visual detection and REC, with
the goal of detecting objects across various described cat-
egories. However, the above-mentioned datasets often lack
hard negatives, which can lead to models detecting objects
based on general terms rather than recognizing fine-grained
details. Moreover, existing datasets have not investigated the
model’s ability to utilize common sense knowledge for de-
tecting objects such as landmarks, logos, and celebrities.

Endeavor for Systematic Model Evaluations: Bench-
mark scores often do not provide a comprehensive under-
standing of a model’s capabilities, as they tend to present a
superficial evaluation that can be difficult to interpret. Con-
sequently, researchers have sought to scrutinize machine
learning (ML) models with greater precision and granularity.
In the realm of natural language processing (NLP), Check-
List (Ribeiro et al. 2020) evaluates a wide range of linguistic
competencies, revealing the limitations of numerous lead-
ing NLP models. For computer vision, the Vision Check-
List (Du et al. 2022) assists system developers in under-
standing a model’s potential by introducing various trans-
formation techniques to generate an extensive array of test
samples. In the vision-language multimodal domain, VL-
Checklist (Zhao et al. 2022b) serves as a framework for
examining the proficiency of vision-language processing
(VLP) models.

In the field of OD, studies often report conventional Av-
erage Precision (AP) scores. However, without an in-depth
analysis, these scores can be challenging to understand. To
address this limitation, we propose a novel evaluation ap-
proach that investigates a model’s proficiency across clearly
defined dimensions. Additionally, we introduce an evalua-
tion metric designed to tackle the problem of deceptively
high AP scores.

OVDEval Benchmark
The utilization of commonly employed OD datasets is asso-
ciated with certain limitations. Firstly, evaluating OD perfor-
mance solely based on AP across all labels in these datasets
provides only a basic assessment. The specific capabilities of
the model, such as accurately identifying object positions,
have not been thoroughly evaluated. Moreover, in order to
maintain linguistic label diversity and comprehensiveness,
the distinctions between labels within the same dataset are
typically coarse-grained and easily distinguishable. How-
ever, the OD task in the real world is much more challenging
than merely detecting obvious objects or expressions. It is
crucial to include hard negative samples that possess similar
linguistic meanings but refer to different objects. Consider-
ing these concerns, we propose a new comprehensive bench-
mark dataset called OVDEval. OVDEval is divided into 9
sub-datasets, each focusing on evaluating the OD capabili-
ties across 6 aspects: object, proper noun, attribute, position,



relationship, and negation. The utilization of this benchmark
dataset offers 3 significant benefits:

• Detailed understanding of OD models: By evaluating OD
models across different linguistic aspects, we can gain a
more detailed understanding of their performance. This
allows us to gain insights into the strengths and weak-
nesses of OD models, thereby facilitating the identifica-
tion of areas for improvement.

• Commonsense understanding performance: OVDEval is
specifically designed with linguistic queries, including
commonsense knowledge-based labels, which enable us
to assess the model’s commonsense capabilities in the
context of multimodal OVD. This evaluation sheds light
on how well the model interprets knowledge.

• Fine-grained hard negative labels: we have carefully se-
lected hard negative samples that conflict with the ground
truth labels for each object, which provide a straightfor-
ward assessment of the model’s performance in specific
aspects.

Datset Description
We comprise the benchmark dataset from three viewpoints.
Firstly, in line with existing datasets that primarily focus
on evaluating the detection of common objects, we employ
the COCO dataset to assess the models’ general ability in
this domain. Additionally, we aim to investigate the mod-
els’ capacity to leverage external knowledge and common
sense. Therefore, landmark, logo, and celebrity, which re-
quire knowledge in both vision and language are imple-
mented. Samples for the three aspects are shown in Fig-
ure 1. Furthermore, to delve into the models’ proficiency
in localizing fine-grained details, we divide the dataset into
attributes (color and material), relationship, position, and
negation aspects. Figure 2 shows the detail-oriented dataset
samples with corresponding fine-grained hard negative sam-
ples, which essentially raise the detection difficulty. Finally,
9 sub-dataset across 6 aspects are collected and described as
follows:

the Statue of Liberty Taylor SwiftMcDonald's logo

Logo CelebrityLandmark

Figure 1: Samples of Proper noun datasets.

• Object is utilized to evaluate the general capability in
identifying common objects on the COCO Val 2017 (Lin
et al. 2014), which covers 80 common object categories.

• Proper noun can unveil a model’s comprehension of
commonsense knowledge including famous landmarks,
renowned logos, and celebrities.

• Attribute is used to assess OVD model’s proficiency of
distinguishing object characteristics. Specifically, color

white shoe

blue shoe

red shoe

yellow shoe

brown shoe

green shoe

bamboo chair

stainless steel chair

enamel chair

rattan chair

silver chair

sponge chair

fabric chair

ceramic chair

leather chair

wooden chair

person who is not
wearing a black shirt

person wearing a
black shirt

the potted plant on the right side of the purple potted plant

the potted plant on the bottom side of the purple potted plant 

the potted plant in front side of the purple potted plant 

the potted plant on the left side of the purple potted plant

umbrella is held by person


person repair umbrella

person carry umbrella

person open umbrella

umbrella is repaired by person

umbrella is carried by person

umbrella is opened by person

person hold umbrella

Attribute - Color Attribute - Material

Relationship

Position

Negation

Figure 2: Detail-oriented dataset samples. Ground-truth la-
bels are annotated with red color, and fine-grained hard neg-
ative samples are shown in black.

and material are employed as representing attribute as-
pects.

• Position aims to evaluate identifying specific objects
among multiple visually similar items within a given im-
age. The evaluation entails determining the target object
based on the spatial relationships with other described
object expressions.

• Relationship involves the examination of interactions be-
tween humans and other objects to comprehend both ac-
tive and passive relationships among multiple objects.

• Negation focuses on identifying objects expressed nega-
tively, like spotting kitchen staff not wearing gloves. This
checks the model’s skill in detecting objects expressed in
a negated context.

Dataset Collection Process
Image Collection We collected varied images from three
main sources. We used popular datasets, notably COCO and
HICO (Chao et al. 2018). For evaluation, the COCO Val
2017 was directly used. For relationship, the HICO dataset
was the key source. After selecting the top-most frequent in-
teraction label and excluding it, this selection process was
repeated 10 times. We also changed active expressions to
passive ones, ensuring two distinct labels for each sample
image.

For the color sub-dataset, we identified the top 50 objects
from the visual genome (VG) dataset (Krishna et al. 2017),
labeling them using Oscar (Li et al. 2020). This enabled la-
beling objects from VG with colors. We concentrated on
six object categories and six distinct colors, leading to 36
object-color combinations. Images were then randomly cho-
sen from VG based on Oscar’s labels.

For other datasets (landmark, logo, etc.), images came
from the Laion-400m dataset (Schuhmann et al. 2021). We



began by identifying key terms for each subset. Using CLIP
(Radford et al. 2021), a top-tier image-text match model, im-
ages were sourced based on these keywords. To ensure vari-
ety, we crafted specific search prompts, considering context
and diversity. For position and negation, we added terms like
”multiple” to get images with several similar items.

Hard Negative Labels We have implemented a novel ap-
proach that incorporates fine-grained hard negative labels for
each linguistic aspect. These carefully selected hard nega-
tive labels are specifically designed to challenge the models
and prevent them from achieving high scores on particular
aspects without a genuine understanding.

• For color, variations in colors with the same object cate-
gory are used to serve as negative labels. This approach
exposes the OVD models to different color represen-
tations of the same object, thereby testing their ability
to accurately distinguish and classify objects based on
color.

• For material, we maintain consistency in the object cate-
gory while introducing variations in materials.

• For relationship, we maintain the same subject and object
entities but alter the verbs used to describe their relation-
ship.

• In position, we introduce changes in position words to
serve as negative labels. For example, the words left can
be replaced with right, above, under, front, back, and in.

• For negation, we remove the word ”not” from the posi-
tive labels as negative labels.

The datasets with detail-oriented negatives essentially chal-
lenge the OVD models toward the advancement of object
understanding in natural language processing.

Manual Annotation To ensure the accuracy and reliabil-
ity of the dataset, we engaged a team of OD annotation
experts to manually annotate the collected images with a
rigorous annotation process and a thorough quality inspec-
tion process. During the annotation process, any images with
ambiguous labels were carefully identified and filtered out,
guaranteeing the integrity of the final dataset. All the bound-
ing boxes for the corresponding objects were annotated.

Statistics
The comprehensive OVDEval dataset comprises 9 distinct
sub-datasets, collectively offering a total of 20K high-
quality images accompanied by 3K meticulously annotated
labels. The statics of each sub-dataset is provided in Ta-
ble 1. Notably, each sub-dataset encompasses a range of
1K to 5K images, ensuring the diversity and representa-
tives of samples. While some sub-datasets feature proper
nouns with a limited number of labels, it is important to
highlight that all other sub-datasets can be considered as
open set labels. Moreover, these sub-datasets incorporate ex-
tremely hard negative labels, further pushing the boundaries
of model performance and evaluation. The inclusion of open
set labels and hard negative labels within the majority of the
sub-datasets enhances the dataset’s realism and reflects the
complexities encountered in real-world scenarios.

The Proposed Evaluation Metric
The Inflated AP Problem
AP is commonly defined as the area under the precision-
recall curve. This metric provides a comprehensive evalua-
tion of the model’s performance by considering the trade-off
between precision and recall. Recent research papers have
predominantly reported results for the COCO dataset. In the
COCO mean Average Precision (mAP) calculation, a 101-
point interpolated AP definition is utilized. Specifically, for
COCO, AP is determined as the average across multiple
Intersection-over-Union (IoU) thresholds that determine a
positive match. AP@[.5:.95] represents the average AP for
IoU values ranging from 0.5 to 0.95, with a step size of 0.05.

Considering a scenario where an OVD model demon-
strates good zero-shot performance in detecting objects but
totally doesn not understand contextual descriptions, the
model can deceive traditional AP metrics and obtain a high
score by generating multiple predicted bounding boxes for
the target object with all candidate labels. Assuming an im-
age with 2 annotated ground-truth instances are labeled as
two categories red car and blue car, respectively. Then, the
aforementioned model predicts 4 bounding boxes, generat-
ing 2 for each target object and assigning both candidate la-
bels to each box. The IoUs between predictions and corre-
sponding ground-truth instances are assumed to be greater
than 0.95. As a result, the precision and recall for each cate-
gory can be derived using the following equation:

Precision =
TP

TP + FP
=

1

1 + 1
= 0.50 (1)

Recall =
TP

GTnum
=

1

1
= 1.0 (2)

Here, TP represents the number of correctly predicted in-
stances for a specific category, while FP represents the num-
ber of instances that were incorrectly predicted as belong-
ing to that category. GTnum represents the total number
of ground-truth instances in the image. In the given sce-
nario, where the IoU of predictions is assumed to be greater
than 0.95, we can ignore the AP calculation process for IoU
values ranging from 0.5 to 0.95. Therefore, we can calcu-
late the average AP of each category as 0.50. Consequently,
the mAP would also be 0.50. In this case, the model de-
ceives traditional AP metrics to get an mAP score of 0.50,
even though it only detects the target objects without com-
prehending their descriptions. In this case, the conventional
COCO AP metric demonstrates a vulnerability that we refer
to as the inflated AP problem. During the stage of match-
ing predictions with ground truth to count TP and FP, it only
considers predictions that have the same label as the ground
truth. As a result, OVD models can obtain inflated AP scores
by simply predicting multiple bounding boxes on a single
object with all possible labels.

This weakness in the COCO AP metric can lead to mis-
leading evaluations of OVD models’ performance, as it fails
to capture the accuracy of the descriptive labels assigned
to the objects. Therefore, it is essential to develop alterna-
tive evaluation metrics that consider both object detection
and the contextual understanding of linguistic descriptions



Object Attribute Proper noun Relationship Position Negation
COCO Color Material Landmark Logo Celebrity

Images 5,000 1,170 2,124 1,533 1,935 2,244 2,169 2,109 1,858
Bboxes 36,781 3,421 5,358 1,709 2,329 2,244 8,190 2,150 3,785
Labels 80 36 90 9 9 10 319 7,301 2,414

Avg. negative labels - 5.01 8.73 8.00 8.00 9.00 7.65 3.06 1.00
Avg. label tokens 6.03 11.56 11.01 14.37 11.24 12.15 24.14 47.08 27.34
Avg. label words 1.10 2.00 2.03 2.66 2.00 2.12 4.48 9.67 5.35

Table 1: OVDEval statistics for the 9 sub-datasets.

to provide a more comprehensive assessment of OVD mod-
els.

A Simple Fix: NMS-AP
To address the aforementioned issue, we propose a simple
fix for the COCO AP metric, which we refer to as NMS-AP.
It extends the traditional COCO AP metric by incorporating
NMS (Girshick 2015), a technique that is used in OD tasks
to eliminate redundant bounding box predictions by select-
ing the most relevant ones based on their confidence scores
and suppressing overlapping bounding boxes based on IoU.
Specifics of NMS-AP are outlined below Algorithm 1.

Algorithm 1: NMS-AP Metrics
Input: preds: predictions
Input: GT : ground-truth
1: pickedPreds = keepPreds = []
2: for k in GT do
3: for p in preds do
4: if IoU(p, k) >0.5 then
5: pickedPreds = pickedPreds ∪ p
6: else
7: keepPreds = keepPreds ∪ p
8: end if
9: end for

10: keepPreds = keepPreds ∪ C-NMS(pickedPreds)
11: end for
12: mAP = AP (keepPreds,GT )
13: return mAP

In NMS-AP, instead of considering only the prediction
with the highest confidence score for each object, we apply
a class-ignored NMS (C-NMS) to remove redundant predic-
tions that match ground truth. To be specific, we employed
class-ignored NMS on the predictions that exhibited an IoU
>0.5 when compared to the ground-truth instances. This en-
sures that multiple bounding boxes predicted for the same
object are appropriately handled and only use the predic-
tion with the highest confidence. In an ideal scenario with
a flawless OVD model, it should predict bounding boxes
with the correct label and the highest confidence score for
each ground-truth instance. Consequently, the application of
class-ignored NMS will solely remove false positives, en-
suring that this model achieves a perfect score of 1.0. How-
ever, in the case of a subpar model that struggles to com-
prehend complex linguistic descriptions, the application of
class-ignored NMS may lead to a decrease regarding true

positives and NMS-AP scores. This is because of the failure
of accurately predict the bounding boxes that correspond to
the ground-truth instances due to its limited understanding
of the linguistic context.

Results and Analysis
We conducted experiments on 9 datasets across 6 aspects us-
ing several leading publicly available models: Detic (Zhou
et al. 2022), MDETR (Kamath et al. 2021), GLIP (Li et al.
2022b), FIBER (Dou et al. 2022), Grounding DINO (Liu
et al. 2023) and OmDet (Zhao et al. 2022a). We provide
these detailed model information such as pretraining data,
backbone, and the number of parameters (Table 2).

Main Results on NMS-AP on OVDEval

Proper Noun

AttributePosition

Relationship

Negation Object

10
20

30
40

50
60

70

GLIP

FIBER

Grounding DINO

Detic

MDETR

OmDet

Figure 3: Radar chart of NMS-AP results on 6 aspects. Most
models successfully worked on object but failed on others.

The experimental results, as presented in Table 3, show
that current models generally perform satisfactorily on the
object task, with the exception of MDETR. This observa-
tion is consistent with earlier work that reported MDETR’s
low performance on the COCO dataset (Cai et al. 2022).
This indicates that most existing models possess strong ca-
pabilities in detecting objects. However, we observe that all
current models exhibit poor performance on the logo, land-
mark, and celebrity tasks in proper noun aspect. Especially
the NMS-AP values are close to 0% in celebrity tasks. No-
tably, Detic demonstrates impressive results on the logo and



Model Pre-train Data Backbone Params

Detic ImageNet-21K,COCO,LVIS Swin-B 141.6M
MDETR VG,Flickr30k,COCO image-text pairs ResNet-101 185M

GLIP FourODs,GoldG,CC3M+12M,SBU Swin-L 430.42M
FIBER Flickr30k, MixedNoCOCO, O365 Swin-B 252.06M
OmDet O365,Roboflow100,GoldG,PhraseCut,HOI-A,VAW ConvNext-B 241.5M

Grounding DINO COCO,O365,GoldG,Cap4M,OpenImage,ODinW-35,RefCOCO Swin-B 232.9M

Table 2: The relevant information of different models include pre-train data, backbone, and parameters.

Aspects Sub-datasets GLIP FIBER Grounding DINO Detic MDETR OmDet

NMS-AP/AP NMS-AP/AP NMS-AP/AP NMS-AP/AP NMS-AP/AP NMS-AP/AP

Object COCO 48.90 / 51.30 46.80 / 49.30 52.50∗ / 55.30∗ 45.30∗ / 45.80∗ 1.60 / 3.20 54.60 / 57.50

Logo 10.20 / 17.61 6.30 / 9.05 10.30 / 14.60 9.60 / 9.60 0.90 / 4.60 2.90 / 7.46
Landmark 20.30 / 36.36 11.00 / 16.99 15.10 / 23.40 30.00 / 30.08 1.80 / 7.80 18.10 / 22.70
Celebrity 4.60 / 8.24 0.80 / 3.31 0.70 / 2.00 0.00 / 0.00 1.10 / 4.80 0.70 / 5.07

Proper Noun Avg 11.70 / 20.74 6.03 / 9.78 8.70 / 13.33 13.20 / 13.23 1.27 / 5.73 7.23 / 11.74

Color 3.70 / 6.70 6.80 / 9.40 9.40 / 12.41 3.90 / 4.14 3.10 / 7.30 18.50 / 20.60
Material 7.40 / 15.87 12.40 / 17.72 9.00 / 15.50 9.20 / 9.75 2.50 / 10.70 11.60 / 17.32

Attribute Avg 5.55 / 11.28 9.60 / 13.56 9.20 / 13.96 6.55 / 6.94 2.80 / 9.00 15.05 / 18.96

Position 30.90 / 48.10 34.30 / 48.20 67.50 / 77.40 12.20 / 14.40 34.00 / 48.80 17.20 / 46.01

Relationship 10.00 / 33.20 14.50 / 31.40 10.70 / 35.30 6.10 / 7.20 8.20 / 29.40 37.60 / 49.69

Negation 29.30 / 51.80 28.70 / 57.20 52.50 / 67.30 27.90 / 29.70 28.30 / 41.10 28.30 / 52.80

Total Average 18.37 / 29.91 17.96 / 26.95 25.30 / 33.69 16.02 / 16.74 9.06 / 17.52 21.06 / 31.02

Table 3: The NMS-AP and traditional AP evaluation results (%), * represents supervised score, otherwise it’s zero-shot. Total
average is averaged over the 9 subtasks.

landmark tasks, even without employing a complex fusion
strategy, while its performance is relatively weak on tasks
involving longer descriptions.

For datasets with hard negatives, the labels often involve
some descriptions and require a more fine-grained linguis-
tic understanding for models. We found that all models ex-
hibit poor performance on color and material tasks. In con-
trast, OmDet performs more favorably overall on these tasks,
largely due to its use of the VAW (Pham et al. 2021) dataset
with attributes during pre-training. Meanwhile, the overall
performance of existing models on the position, relation-
ship, and negation tasks is similar, with generally low NMS-
AP values. This indicates that the current models have lim-
ited capability in handling tasks with fine-grained descrip-
tions. However, we note that Grounding DINO significantly
outperforms the other models in position task. This can be
attributed to its utilization of the RefCOCO dataset with ori-
entation data during pre-training, which provides the model
with specific knowledge related to the position and improves
its performance on this task. Moreover, OmDet performs
better than other models on the relationship task, which can
be attributed to its use of the HOI-A (Liao et al. 2020)
dataset with relation attributes during pre-training, provid-
ing the model with specific knowledge related to the rela-
tionship and improving its performance on this task. While
minor differences exist, all models display a similar trend

when we represent the 6 aspects on a radar chart (Figure 3).
All models successfully worked on the common object task
(object). However, they all failed on the hard tasks from the
proposed datasets, which require the use of external/com-
monsense knowledge and fine-grained localization ability.
Therefore, it is evident that a dataset with fine-grained la-
bels is necessary to establish a better benchmark to provide
a clear optimization direction for improving the model’s per-
formance on challenging tasks.

Comparing NMS-AP with Traditional AP

To validate the Inflated AP problem, we performed the eval-
uation of traditional AP on our OVDEval dataset and com-
pared it with the NMS-AP results. Table 3 shows that the dif-
ference between NMS-AP and AP on classical OD datasets
such as COCO is small, e.g., 52.50 vs. 55.30 for Ground-
ing DINO because the probability of mutual exclusion of the
predicted labels in this task is small and its impact on the AP
calculation is negligible. On the other hand, the difference
between NMS-AP and AP becomes much more significant
for more difficult aspects including attribute, position and
etc. For example, the relationship AP of Grounding DINO
decreased from 35.30 to 10.70. The above results confirmed
that our hypothesis about the Inflated AP Problem exists for
the compared OVD models. To visually illustrate our hy-
pothesis and investigate the cause of the large NMS-AP and



AP difference, we have plotted several bounding boxes ob-
tained from the GLIP predictions1, as illustrated in Figure
4.

(a) before NMS (b) after NMS

Figure 4: Examples of predictions from GLIP before and
after class-ignored NMS, showing the limitation of current
OVD models.

From the examples depicted in Figure 4, it is evident that
GLIP tends to generate multiple bounding boxes on the same
object. Notably, the labels assigned to these bounding boxes
are mutually exclusive. For instance, in the case of a cat, the
predicted bounding boxes include both ”cat that is sitting”
and ”cat that is not sitting”. This inconsistency matches our
hypothesis about the inflated score problem by deceiving tra-
ditional AP. That is although Grounding DINO has a poor
performance in understanding negation it can still obtain a
high AP score.

On the other hand, by employing our NMS-AP algorithm,
we effectively retain only one bounding box with the high-
est confidence for each ground-truth instance while disre-
garding other false bounding boxes during the AP calcula-
tion. This approach helps mitigate the inflated AP problem
caused by multiple bounding boxes. The decrease in scores
that we observed earlier can be primarily attributed to mod-
els predicting the highest confidence on false labels, indi-
cating a failure in comprehending fine-grained descriptions.
Note that among all the models, Detic suffers the least from
NMS-AP and AP difference because its model architecture
already applies NMS internally to the region proposal net-
work (RPN) that remove the duplicated boxes over the same
region (Zhou et al. 2022).

Therefore, utilizing NMS-AP to evaluate OVD models
on our benchmark provides a more suitable approach for
assessing their performance on intricate linguistic descrip-
tions. This method helps address the limitations of the mod-
els and provides a more accurate evaluation metric.

Limitations of Current OVD Models
We have also noticed a recurring issue among all the OVD
models, where they tend to generate multiple bounding
boxes for the same object but assign inconsistent labels to
them. Moreover, these predicted labels are often mutually
exclusive, and it is worth mentioning that the predictions
with the highest confidence scores are frequently incorrect.
This issue is particularly pronounced in models with a large

1More examples are detailed in the appendix

number of output bounding boxes, such as Grounding Dino.
This observation further strengthens our previous hypoth-
esis that the current models demonstrate exceptional per-
formance in learning straightforward object tasks such as
COCO. However, they encounter difficulties in comprehend-
ing the intricacies of detailed descriptions.

To further support our hypothesis, we plot the distribution
of predicted confidence score for the object and negation as-
pects. Figure 5 from GLIP illustrates the distribution of con-
fidence scores. The distribution of object is obtained from
the model predictions on a subset of images in the COCO
validation dataset. To calculate these distributions, we tally
the number of positive and negative labels from the predic-
tions that have an IoU greater than 0.9 with the ground truth.
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Figure 5: Distribution analysis of predicted confidence for
object and negation aspects in GLIP

Based on the results in Figure 5, it is clear that in the ob-
ject task, positive predictions tend to be spread out across the
high confidence range, while negative predictions are mostly
concentrated in the low confidence range. This indicates that
most models have successfully learned to accurately iden-
tify objects. However, in the negation task, the confidence
distribution of positive and negative samples exhibits a sim-
ilar trend. Meanwhile, the predictions predominantly appear
in the low confidence region. These findings further support
our hypothesis that existing models struggle to comprehend
certain nuanced semantic information in fine-grained tasks.

Conclusion
This paper presents a novel benchmark OVDEval, testing
the generalization of open-vocabulary detectors. We care-
fully create the dataset with challenging hard negatives and
annotate 20K images with human experts. We also identi-
fied the Inflated AP problem for conventional AP calculation
and introduce a new metric NMS-AP to deal with it. Our as-
sessment validates the OVDEval’s effectiveness in revealing
the pros and cons of current SOTA open-vocabulary models.
Lastly, OVDEval provides promising future research ques-
tions. How can we incorporate better training objectives so
OVD models can acquire better discriminate abilities against
hard negatives in both visual and linguistic input? What are
the better pre-training data to inject more common sense
knowledge in vision-language alignment? In summary, solv-
ing OVDEval is an important step for future general-purpose
object detectors.
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Supplementary Material
Cases of predictions before and after applying
class-ignored NMS
Figure 7 presents the prediction results obtained from GLIP
using images from the negation task. The left column shows
visualizations without NMS, while the right column displays
visualizations with NMS. In several instances, we observe
mutually exclusive labels with bounding boxes on the same
object, indicating that OVD models struggle to comprehend
detection tasks involving complex descriptions and chal-
lenging negative samples. Furthermore, the presence of in-
correct labels with higher confidence scores highlights how
these models can deceive traditional AP metrics, despite
their inability to truly understand the complex descriptions.

Distribution analysis of predicted confidence for
object and negation aspects in existing OVD models
Figure 6 illustrates the confidence distributions of additional
OVD models. The distributions are drawn for both the ob-
ject and negation aspects, enabling a comparison between
common object detection and more complex detection with
hard negative samples. This analysis allows us to examine
the model predictions and assess their performance in un-
derstanding and handling complex descriptions. The distri-
bution of object is obtained from the model predictions on
a subset of image in COCO validation dataset. Based on
the trends observed in the graph for each model, it is ev-
ident that they exhibit a strong ability to predict common
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(c) FIBER
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(e) GroundingDINO
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(f) GroundingDINO
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(g) Detic
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(h) Detic

objects, except for MDETR. Positive predictions are con-
centrated in the high confidence area, indicating a high level
of certainty in identifying these objects. On the other hand,
negative predictions are primarily located in the low con-
fidence area, suggesting that the models are confident in
classifying these instances as negatives. Indeed, the distri-
bution of the negation aspect seems to be mixed up between
positive and negative labels, which suggests a failure in the
models’ understanding and differentiation of positive labels
from challenging negative labels with descriptions. This dif-
ficulty in accurately classifying and distinguishing between
positive and hard negative instances indicates a limitation in
the models’ ability to comprehend complex descriptions and
handle challenging negative samples effectively. This obser-
vation highlights an area where further improvements or ad-
justments may be necessary to enhance the models’ perfor-
mance in handling such cases.



0.0 0.2 0.4 0.6 0.8 1.0

prediction confidence

0

1000

2000

3000

4000

5000

6000

th
e 

n
u
m

b
er

 o
f 
p
re

d
ic

ti
o
n
s

positive

negative

(i) MDETR

0.0 0.2 0.4 0.6 0.8 1.0

prediction confidence

0

500

1000

1500

2000

2500

3000

th
e 

n
u
m

b
er

 o
f 
p
re

d
ic

ti
o
n
s

positive

negative

(j) MDETR

0.0 0.2 0.4 0.6 0.8 1.0

prediction confidence

0

500

1000

1500

2000

th
e 

n
u
m

b
er

 o
f 
p
re

d
ic

ti
o
n
s

positive

negative

(k) OmDet

0.0 0.2 0.4 0.6 0.8 1.0

prediction confidence

0

500

1000

1500

2000

2500

3000

th
e 

n
u
m

b
er

 o
f 
p
re

d
ic

ti
o
n
s

positive

negative

(l) OmDet

Figure 6: Distribution analysis of predicted confidence for object and negation aspects in existing OVD Models. (a,c,e,g,i,k) for
object aspect and (b,d,f,h,j,l) is for negation aspect.

(a) (b)

(c) (d)
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Figure 7: Examples of predictions from GLIP before and after applying class-ignored NMS. The predictions before NMS are
presented on the left, while the predictions after NMS are shown on the right.


