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Abstract. This paper presents DiffSurf, a transformer-based denoising diffusion
model for generating and reconstructing 3D surfaces. Specifically, we design a
diffusion transformer architecture that predicts noise from noisy 3D surface ver-
tices and normals. With this architecture, DiffSurf is able to generate 3D sur-
faces in various poses and shapes, such as human bodies, hands, animals and
man-made objects. Further, DiffSurf is versatile in that it can address various
3D downstream tasks including morphing, body shape variation and 3D human
mesh fitting to 2D keypoints. Experimental results on 3D human model bench-
marks demonstrate that DiffSurf can generate shapes with greater diversity and
higher quality than previous generative models. Furthermore, when applied to the
task of single-image 3D human mesh recovery, DiffSurf achieves accuracy com-
parable to prior techniques at a near real-time rate. https://github.com/
yusukey03012/DiffSurf
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1 Introduction

Creating and reconstructing 3D shape models in various shapes and poses is a signif-
icant challenge in computer vision and computer graphics, with extensive applications
in gaming, augmented reality (AR) and virtual reality (VR). For such 3D content-based
applications, a surface mesh is the most commonly used shape representation because
of its efficiency during graphics rendering and user-friendliness for artists.

Over the past few years, diffusion models [28, 65] have revolutionized the con-
tent creation paradigm in the image domain, particularly in the task of image gener-
ation from text prompts. Diffusion models can generate high-quality and diverse data
by learning to reverse the diffusion process. This process gradually constructs desired
data samples from noise whose dimensionality is higher than that of previous generative
models such as generative adversarial networks (GANs). Additionally, diffusion models
have been applied to the generation of 3D data, such as object point clouds [49,51,91],
textured 3D models [41, 63, 81], scene radiance field [6] and 3D human pose [25]. Re-
cent 3D shape diffusion models are able to generate 3D surfaces with complex geometry
and topology by incorporating implicit functions, such as signed distance fields (SDF),
and extracting their zero level-set surface using the marching cubes algorithm [13, 71].
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Fig. 1: DiffSurf addresses the unconditional generation of 3D surfaces in diverse poses. It can
generate 3D surfaces of various objects types such as humans, mammals and man-made objects.
Downstream tasks, including unconditional generation, morphing and fitting to 2D key points can
be addressed with pre-trained DiffSurf models.

Yet, there remain several challenges in generating 3D surfaces based on diffusion
models. Firstly, the current approaches do not consider pose. In the case of 3D hu-
man and animal generation in different poses, point-to-point correspondences between
shapes are important but they are lost when employing the current 3D shape diffusion
models. There exist recent works of diffusion models for generating 3D human poses
and shapes conditioned on images [14,25,40,42] but generation of diverse body shapes
and poses are not considered. Secondly, we want our generative model to handle a wide
range of objects, such as human bodies, mammals and man-made objects. Thirdly, a
framework that can deal with a wide variety tasks, e.g. interpolating two shapes, altering
pose and manipulating shape, is highly sought after.

In this paper, we propose a transformer-based diffusion model for generating and re-
constructing 3D surfaces (dubbed DiffSurf). To address the aforementioned challenges,
we design a diffusion transformer architecture that predicts noise from noisy 3D surface
vertex coordinates. By representing a surface with points and normals, processing them
in diffusion transformer and then employing up-samplers dedicated for topologically
fixed and varied cases, DiffSurf is able to handle diverse body poses, various object
types and multiple different tasks as illustrated in Figs. 1 and 2. To our knowledge,
DiffSurf is the first diffusion model that addresses generation of 3D surfaces in diverse
body poses and shapes. The contributions of this paper are summarized as follows:

1. DiffSurf, a denoising diffusion transformer model that can generate 3D surfaces in
various body shapes and poses.

2. It can generate 3D shapes of diverse object types, such as human bodies, mammals
and man-made objects, using a diffusion transformer model that leverages point-
normal representation.

3. It provides methodologies for addressing various 3D processing and image-to-3D
downstream tasks by effectively utilizing pre-trained DiffSurf models based on
score distillation sampling (SDS) and classifier-free guidance (CFG).

2 Related Work

Generative models for 3D shape and pose Previous generative models for 3D shape
and pose generation predominantly utilize variational autoencoders (VAEs) [3, 18, 24,
30, 76, 77, 89, 93], generative adversarial networks (GANs) [20, 34] or normalizing
flows [7, 82, 90]. SMPL-X [58] employs a VAE to learn a pose prior and enforces con-
straints on body joint angles. COMA [64] and CAPE [52] designed their VAEs based
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on graph neural networks to model facial expressions and clothing geometric deforma-
tions, respectively. Kanazawa et al. [34] introduced the human mesh recovery (HMR)
technique that estimates a posed human body model from a single image by employing
GANs to to provide body pose and shape priors. Other approaches focus on designing
and obtaining latent encoders or representation using GANs [11, 12, 20]. Recent tech-
niques for 3D human pose and shape estimation employ normalizing flows [7,39,82,90]
in attempting to learn 3D priors from motion capture datasets. Pose-NDF instead rep-
resents and learns a pose space using neural distance fields [79].
Diffusion models and 3D generation In 3D generation, Luo et al. [49] proposed the
first 3D point cloud generation method based on diffusion models by extending Denois-
ing Diffusion Probabilistic Models (DDPM) [28]. LION [91] and SLIDE [51] adopted
Latent Diffusion Models (LDM) [65] in point cloud generation, aiming to reduce point
cloud resolution for more efficient training and sampling. A learning-based surface re-
construction technique called ShapeAsPoint (SAP) [61] is then employed to convert the
generated point clouds into volume functions and subsequently into meshes. To gener-
ate 3D surfaces, recent approaches use implicit functions in diffusion process such as
SDF, and extract a mesh from 3D volume using marching cubes [13, 71, 88]. MeshDif-
fusion [47] uses DMTet [70] that combines a tetra mesh and SDF to represent the object
shape to generate topologically and geometrically complex objects. Mo et al. proposed
DiT-3D [56] which extends diffusion transformer [4, 5, 59, 60] to voxelized 3D point
clouds, accomplishing the generation of 3D objects. PolyDiff introduced a 3D diffu-
sion model that can work with polygonal meshes [1]. Point-e [57] and Shape-e [33]
extend [49] to colored point clouds using transformers.
3D shape and pose from image Human mesh recovery approaches [78] predict a
3D human body mesh from a single image or video frames, which can be roughly di-
vided into parametric [8, 34, 92] and vertex-based approaches [16, 38, 43]. Parametric
approaches regress the body shape and pose parameters of human body models like
SMPL or SMPL-X. On the other hand, vertex-based approaches directly regress from
an image to 3D vertex coordinates. Transformer architectures, which are known for their
ability to capture long-range dependencies, have been employed in vertex-based human
mesh recovery and shown strong performances [15,43,44,86,87]. The reconstruction of
mammals from images has also been addressed in the field [67,83,94]. Research on 3D
human body pose and shape generation via diffusion models has recently commenced
but most being task-specific and conditional on 2D data. They include 3D human pose
estimation methods from 2D keypoints [25,69], parametric human mesh recovery tech-
niques [14, 46] and vertex-based human mesh recovery methods [40, 42].

3 Background: Diffusion models

Diffusion models establish a Markov chain of diffusion steps by gradually adding ran-
dom noise to data (i.e., a forward diffusion process) and learn to reverse this process to
construct desired data samples from the noise (i.e., a reverse diffusion process). Con-
sidering a data point sampled from a data distribution x0 ∼ q(x), the forward process
produces a sequence of noisy samples x1 . . .xT by adding a small amount of Gaussian
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noise to the sample in T steps:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (1)

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (2)

where {βt}T1 ∈ (0, 1) is the noise variance schedule.
Data generation can be initiated from a Gaussian noise input xT ∼ N (0, I), pro-

vided that the aforementioned forward process is reversed to sample from q(xt−1|xt).
However, the calculation of q(xt−1|xt) depends on the entire dataset and is not straight-
forward. To address this, a neural network model pθ is used to approximate these con-
ditional probabilities with a Gaussian model:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2I) (3)

where t is a timestep uniformly sampled from 1, 2, . . . , T . Then, µθ(xt, t) can be rewrit-
ten with noise prediction ϵθ(xt, t) as:

µθ(xt, t) =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
(4)

where αt = 1 − βt and xt =
√
ᾱtx0 −

√
1− ᾱtϵ with ᾱt =

∏t
t=1 α. To learn to

estimate ϵθ(xt, t) between consecutive samples xt−1 and xt, the training loss is defined
as follows:

L = Et,x0,ϵ||ϵ− ϵθ(xt, t)||22 (5)

UniDiffuser UniDiffuser [5] introduced an approach to handle multi-modal data dis-
tributions in the diffusion process in a unified manner. It defines the conditional expec-
tations in a general form, E[ϵx, ϵy|xtx ,yty ], for all 0 ≤ tx, ty ≤ T , where tx and ty

represent two potentially different timesteps. xtx and yty are the corresponding per-
turbed data. With this formulation, marginal diffusion, conditional diffusion and joint
diffusion can be achieved by setting ty = T , ty = 0 and tx = ty = t, respectively.
To this end, a joint noise prediction network ϵθ(xtx ,yty , t

x, ty) is employed to pre-
dict noise ϵθ = [ϵxθ , ϵ

y
θ ] injected into xtx and yty , which is trained by minimizing the

following loss:

Luni = Ex0,y0,ϵx,ϵy,xtx ,yty
||[ϵx, ϵy]− ϵθ(xtx ,yty , t

x, ty)||22

where x0 and y0 are the data points, ϵx and ϵy are sampled from Gaussian distributions,
and tx and ty are independently and uniformly sampled from the range 1, 2, . . . , T . Fur-
thermore, UniDiffuser is directly applicable to classifier-free guidance (CFG), which is
a method introduced to enhance the sample quality of conditional diffusion models [27],
without modifying the training loss. For instance, x0 conditioned on y0 can be gener-
ated as follows:

ϵ̂xθ (xt,y0, t) = (1 + sg)ϵ
x
θ (xt,y0, t, 0)− sgϵ

x
θ (xt, t, T ) (6)
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Fig. 2: Overview. DiffSurf consists of a diffusion transformer and an up-sampler. The diffusion
transformer takes in the noisy 3D coordinates of surface vertices xt ∈ RN×3 and body joints
yt ∈ RJ×3. It processes these two modalities of data along with their corresponding timestep
tokens tx and ty . The transformer then outputs noise predictions for vertex and joint tokens, ϵxθ
and ϵyθ , respectively. For the 3D surface generation of man-made objects, we also input the noisy
surface normals nt ∈ RN×3 corresponding to vertex tokens into the diffusion transformer. Once
the 3D coordinates of surface vertices v (and normals n) are generated, up-sampling is optionally
performed to obtain the full dense surface output V (and N).

where sg is a guidance scale and ϵxθ (xt,y0, t, 0) and ϵxθ (xt, t, T ) are the conditional and
unconditional models, respectively.
Score Distillation Sampling (SDS) A loss calculation framework called Score Dis-
tillation Sampling (SDS) is proposed by DreamFusion [63] for utilizing pre-trained
diffusion models in optimizing and regularizing a neural 3D scene model. The scene
model is defined by a parametric function of the form x = g(ϕ) capable of generating
an image x from the desired camera pose. In this context, g is a volumetric renderer
such as NeRFs and ϕ is a Multi-Layer Perceptron (MLP) that models a 3D volume.
Given a text condition y0, SDS derives the gradient to update ϕ in such a way that:

∇ϕLSDS(ϕ, g(θ)) = Et,ϵ

[
ω(t)(ϵθ(xt,y0, t)− ϵ)

∂ϕ

∂x

]
where ω(t) is a weighting function. In practice, the conditional noise prediction model
ϵθ(xt,y0, t) is replaced with the classifier free guidance one, ϵ̂θ(xt,y0, t).

4 Method

We introduce DiffSurf, a general network architecture for generating, editing and recon-
structing 3D surfaces based on a plain diffusion transformer model, which is extendable
to a wide range of object types. In addition, we introduce downstream methodologies
to leverage pre-trained DiffSurf models for solving various 3D processing tasks.

For the generation of posed 3D surfaces, we propose to incorporate the vertex-based
mesh recovery paradigm [15, 43, 44] from human mesh recovery into 3D shape gener-
ation. Then, point-to-point correspondences between shapes are ensured by learning
from training meshes with the same connectivity. This is a straightforward yet effective
strategy, which is overlooked by the recent 3D shape generation literature, when un-
conditionally generating human and animal 3D surfaces in different poses where corre-
spondences across shapes are vital. To the best of our knowledge, DiffSurf is the first
3D diffusion model capable of unconditionally generating 3D surfaces of articulated
objects in diverse poses.
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Fig. 3: w/o and with surface normals.

As for generating man-made objects, we pro-
pose a strategy for capturing better geometry by
incorporating surface normals into the diffusion
process. This approach not only leads to better
generation results but also provides a more in-
formative input for the subsequent surface recon-
struction post-processing [51, 61, 91] than using point sets alone, as shown in Fig. 3.
This is particularly useful for generating 3D surfaces with complex geometry and topo-
logical differences, although point-to-point correspondences may be lost in this case.
Unlike the recent diffusion models based on implicit functions [13, 56], in the dif-
fusion process, we avoid using a volumetric representation whose complexity grows
cubically w.r.t voxel resolution. Instead, we directly work on an explicit point represen-
tation through the diffusion transformer to exploit long-range dependencies between
points. As a result, DiffSurf only needs a single diffusion model as opposed to previous
hierarchical latent diffusion models which rely on two diffusion models [91], making
our model computationally more efficient.

4.1 Network architecture

We describe our diffusion transformer architecture for generating 3D surfaces. It draws
inspiration from vertex-based human mesh recovery approaches [15, 43, 44] and point
cloud latent diffusion models [49,51,91], which process explicit 3D point-based repre-
sentations in neural network models. Specifically, we have designed a UniDiffuser-like
multi-modal diffusion transformer architecture [84] that predicts noise from noisy 3D
coordinates of surface vertices and body joints, treating them as two distinct modalities.
The incorporation of body joints not only facilitates more effective training [43] but also
provides landmark controls [51] for manipulating shape and pose. Consequently, we in-
troduce a simple yet versatile transformer architecture for generating and reconstructing
3D surfaces of articulated objects in various shapes and poses, thereby enabling vari-
ous downstream 3D processing tasks as illustrated in Fig. 2. DiffSurf consists of 1) a
diffusion transformer and 2) a mesh up-sampler.
Diffusion transformer blocks The inputs to the diffusion transformer consist of noisy
3D coordinates for a set of joint query tokens QJ = {Q1

J . . . Q
J
J } and coarse vertex

query tokens QV = {Q1
V . . . QN

V }, corresponding to an articulated body mesh compris-
ing J joints and N vertices. The input noisy 3D coordinates of surface vertices, body
joints and their concatenations are respectively denoted as xt ∈ RN×3, yt ∈ RJ×3 and
Xt ∈ R(J+N)×3. The diffusion transformer processes these two modalities of data and
their corresponding timesteps tx and ty as tokens. It outputs noise predictions for ver-
tices and joints, ϵxθ and ϵyθ . For the generation of man-made objects, we concatenate the
noisy 3D coordinates of vertices xt with the corresponding surface normals nt ∈ RN×3

to construct an N × 6 matrix, which is then input to the diffusion transformer. Our dif-
fusion transformer consists of 7 layers of transformer blocks and input/output MLP
layers. Each transformer block has hidden layers with the dimension of 256 channels.
The input MLP layer converts xt and yt into 256-dimensional embedding features and
the output MLP layer converts the features processed by transformer into ϵxθ and ϵyθ .
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Up-sampling After a coarse surface comprising N vertices, v ∈ RN×3 and corre-
sponding surface normals n ∈ RN×3 are produced from the noise prediction ϵxθ by the
diffusion transformer, we apply an upsampling operation. For human and animal gener-
ation, where point-to-point correspondences i.e. mesh connectivity is fixed, an upsam-
pling technique based on MLPs similar to [43,44,86] is adopted to obtain a dense mesh
(see Fig. 2) with M vertices, V ∈ RM×3. For the surface generation of man-made ob-
jects, refinement and upsampling based on the improved PointNet++ model [50] are ap-
plied to increase the number of points and normals by a factor of ×5 [51]. Subsequently,
a learning-based surface reconstruction technique called Shape-As-Points (SAP) [61] is
employed to convert the upsampled points V and normals N into a mesh.

4.2 Downstream methodologies

Here, we demonstrate that DiffSurf is capable of performing a series of downstream
tasks in 3D surface editing and reconstruction.
Pose conditioned mesh generation DiffSurf can generate a mesh that is conditioned
on 3D skeleton landmark locations, such as those obtained using motion capture and
image-based 3D pose regressors. Essentially, this process of conditional mesh genera-
tion involves feeding 3D body joint locations as queries into the diffusion transformer
and setting the timestep to ty = 0. Naively feeding 3D joint locations into DiffSurf
results in slight discrepancies between the mesh and the joints. To address this, we
leverage CFG (Eq. (6)) to push the mesh toward joint locations and improve alignments
between them. We found that setting the CFG weight to around sg = 1 effectively
improves alignment while preserving the mesh structure. Excessively increased CFG
weights, e.g., sg > 3, can result in distortion of the mesh (as shown in the Appendix).
Body shape variation By feeding a skeleton to DiffSurf as a condition and performing
sampling with varying random noise, we can generate meshes in different body shapes,
as shown in Fig. 1 (right). However, this approach does not allow for changes in body
heights and segment lengths. To address this, we adopt a two-step strategy. The first step
involves unimodal generation to create a batch of skeletons with different body poses
and styles. The second step then adjusts the segment lengths of one of generated skele-
tons based on others in the batch. By inputting these modified skeletons into DiffSurf,
we can generate meshes in diverse body styles while maintaining the pose.
Shape morphing DiffSurf is capable of morphing between two meshes with different
poses and shapes. This is achieved by blending two meshes represented as the Gaus-
sian noise, x1

T and x2
T , through spherical linear interpolation (SLERP) [72], x̂T =

SLERP(x1
T ,x

2
T , w), where w is an interpolation weight within the range [0, 1]. Setting

w outside this range [0, 1] e.g., [−0.25, 1.25], results in extrapolation. Given the new
noise x̂T , a mesh is then sampled from it using DiffSurf. It is noteworthy that DiffSurf
has the capability to simultaneously handle both shape and pose variations.
Shape refinement Instead of starting from Gaussian noise to generate a mesh, DiffSurf
can refine a mesh exhibiting noise and distortions by leveraging the SDS gradients as
calculated in Eq. (7). Analogous to mesh fairing [21], a sequence of refined meshes can
be constructed by explicitly applying the SDS gradients to a mesh:

Xl+1 = Xl −∇ϕLSDS(ϕ,X
l) (7)
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Fig. 4: Control point deformation. Left: comparison of the loss terms. Right: deformation exam-
ples obtained using five control points (head, wrists and ankles, marked in red). The process starts
with the rest pose and a human mesh is deformed to align with the control points. DiffSurf can
deform a mesh into extremely different poses, such as a forward-bending posture.

It should be noted that, in contrast to DreamFusion [63], Xl is not an output from a
neural network model but rather the 3D coordinates of surface vertices and body joints.
Control point deformation DiffSurf facilitates data-driven mesh deformation, sim-
ilar to prior shape editing techniques [22, 23, 75], by creating a mesh in a plausible
shape and pose through the specification of a set of control points and fitting the mesh
toward them. Building upon [63], we devise a loss function derived from differential
mesh properties of the SDS target mesh to preserve local geometries of the mesh. We
minimize the following total loss Ldef to optimize X:

Ldef(X) = LSDS + Ledge
SDS + Llap

SDS + Lconsist + LCP (8)

where LSDS, Ledge
SDS and Llap

SDS represent losses defined by the distances between the SDS
targets and predictions for the 3D vertex coordinates, edges and Laplacian coordinates
of the coarse mesh, respectively. Lconsist maintains the consistency between the joint
and mesh predictions, defined by the distances between the optimized joints and the
regressed joints, which are calculated from the coarse mesh vertices using the joint
regressor. The regressed joints jreg ∈ RJ×3 are calculated from the mesh vertices using
the joint regressor, jreg = JV, where J ∈ RJ×M is a joint regressor matrix [48, 66,
94]. LCP quantifies the distances between the optimized joint locations and the control
points (see the Appendix for more details).

Figure 4 (left) shows the comparisons of the loss terms. Using LSDS and LCP, Diff-
Surf is able to fit a human mesh towards control points, but there remain some distances
between them. Incorporating Lconsist improves the fit but introduces distortions around
the control points. Adding Ledge

SDS and Llap
SDS remedies this issue by considering the dif-

ferential properties of the coarse mesh to preserve its local geometry.
2D keypoint fitting While previous research [8, 39] has addressed the challenge of
fitting a parametric model to 2D landmarks, we propose an alternative vertex-based
fitting approach for this task. Consequently, our method is applicable to both parametric
and vertex-based mesh recovery approaches and improves their mesh recovery results.

Starting from the initial solution derived from a mesh recovery approach, DiffSurf
optimizes mesh vertices and body joints to improve their alignment with 2D keypoint
locations. The loss function for 2D keypoint fitting is defined by modifying Eq. (8)
slightly as follows:

Lfit(X) = LSDS + Ledge
SDS + Llap

SDS + Lconsist + L2D (9)



DiffSurf 9

where L2D measures the discrepancies between the ground truth and predicted 2D key-
points. These 2D keypoint predictions are obtained by projecting 3D joint positions
using the camera parameter predictions from the mesh recovery approach. In addition,
as DiffSurf is trained on the dataset with global position and rotation aligned at the root,
we rigidly align the mesh prediction with the canonical orientation before subtracting
the SDS gradients, such that: T (X−∇ϕLSDS(ϕ, T

−1(X)), where T is the global trans-
formation of the mesh recovery result w.r.t the canonical orientation. The global rotation
can be the root orientation predicted by the mesh recovery approach when the global
pose is available. Otherwise, a coordinate frame defined from the body joint predictions
can be used to obtain T e.g., the x-axis and y-axis are defined from the unit vectors
emanating from the pelvis to the neck and from the right hip to the left hip.
Mesh generation from 3D keypoints DiffSurf is capable of reconstructing a 3D
mesh from 3D joint locations by employing the pre-trained DiffSurf model for pose-
conditioned surface generation. To achieve this, we first predict 3D body joint locations
from an image using a 3D pose regressor, which produces the 3D positions of 14 body
joints. Subsequently, these 3D joint positions are inputted into DiffSurf to perform con-
ditional mesh generation with Eq. (6). Similar to the SDS-based 2D keypoint fitting,
this approach requires aligning the mesh with the canonical orientation prior to mesh
sampling. It is noteworthy that this modular human mesh recovery design, based on
DiffSurf, decouples an image-based 3D pose regressor from a mesh generator, enabling
its training even when image-mesh paired data are not available. The architecture of our
3D pose regressor used here is transformer-based (see the Appendix).

5 Experiments

5.1 Dataset and metrics

3D generation We trained our DiffSurf models separately on publicly available 3D
datasets: SURREAL [80], AMASS [53], FreiHAND [17], BARC [67], Animal3D [83]
and ShapeNet [10]. We follow 3D-CODED [26] for the SURREAL train/test split defi-
nition. The global positions of meshes used in the training are aligned at the root posi-
tion and oriented to face forward. The body joints are obtained from meshes using joint
regressors [48,94] for humans and animals. For ShapeNet objects, we feed sparse latent
points generated by SLIDE [51] as body joint tokens to transformer.

Evaluation of 3D human generation was conducted on the SURREAL testset (200
meshes) and DFAUST [9] (800 meshes). The standard metric used for evaluating 3D
generation is the 1-NNA metric [85], which quantifies the distributional similarity be-
tween generated shapes and the validation set. This metric assesses both the quality and
diversity of the generated results. For human generation, given the differences in global
orientations between validation and training meshes, we first perform a rigid alignment
of the predicted mesh with the validation meshes before calculating the 1-NNA metric.
We refer to this modified metric as Rigid Aligned 1-NNA (RA-1-NNA).
Human mesh recovery We trained our 3D pose regressor using publicly available
datasets, adopting the mixed dataset training strategies as outlined in [36, 43]. The
datasets used include Human3.6M [29], MPI-INF-3DHP [55], COCO [45], MPII [2]
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Fig. 5: Left: Unconditional generation and morphing of hands, dogs and animals. Right: class
conditioned generation of man-made objects.

and LSPET [31]. For training, we utilized the 3D joint labels from Human 3.6M and
2D keypoint labels from all the dataset. Additionally, we conduct another training
experiment using 3D body joint labels obtained from pseudo 3D meshes produced
by EFT [32] on the in-the-wild image datasets. Unlike recent mesh transformer ap-
proaches [15,43], we did not use 3DPW [54] as training data for fine-tuning on 3DPW,
but instead only performed evaluations on its test set.

We used the following three standard metrics for evaluation: MPJPE, PA-MPJPE
and MPVE. Mean-Per-Joint-Position-Error (MPJPE) measures the Euclidean distances
between the ground truth and the predicted joints. The PA-MPJPE metric, where PA
stands for Procrustes Analysis, measures the error of the reconstruction after remov-
ing the effects of scale and rotation. Mean-Per-Vertex-Error (MPVE) measures the Eu-
clidean distances between the ground truth and the predicted vertices.

5.2 Training and sampling

The training of DiffSurf involves two steps: training of the diffusion model and the
up-samplers are done separately. We use pre-trained up-sampler models for fixed and
varied topology cases (see the Appendix for the details on the network architectures
and their training). Our diffusion transformer model is trained with a batch size of 256
for 400 epochs on 4 NVIDIA V100 GPUs for the SURREAL dataset, and for 200
epochs on 8 NVIDIA A100 GPUs for the AMASS dataset. It takes about 1 day for
both cases. For the BARC, Animal3D and ShapeNet objects, we extend the training
of diffusion transformer to 4000-8000 epochs because they contain fewer meshes than
SURREAL and AMASS. The dataset statistics are provided in Appendix. We use the
Adam optimizer for training our models, while reducing the learning rate by a factor
of 10 after 1/2 of the total training epochs beginning from 1 × 10−4. For the training
objective of DiffSurf, we adopt the v-prediction parameterization [62, 68] and employ
the DDIM [73] sampler along with a sigmoid variance scheduler. We set the diffusion
time step to T = 1000 and tested sampling steps in the range [1-250].
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Fig. 6: Example results of human mesh recovery by DiffSurf on the 3DPW dataset. Compared to
METRO, DiffSurf produces less distorted results, especially in occluded situations.

5.3 Downstream applications

Unconditional shape generation Figures 1 (left) and 5 (left) depict unconditional
3D mesh generation results of humans, hands, dogs, mammals and man-made objects
based on DiffSurf. DiffSurf trained on FreiHAND can generate 3D hand meshes in
a variety of poses, including thumbs up, victory (peace), open and close. The results
obtained using the BARC and Animal3D dataset indicate that DiffSurf can handle a
range of dog breeds, from small to large, as well as different species. Our approach can
achieve class-conditioned generation of ShapeNet 13 objects by inputting class labels
to the transformer as in U-ViT, which includes generation of topologically different
shapes such as the lamp examples. These results demonstrate the ability of DiffSurf to
generate 3D meshes in diverse shapes and poses.

Pose conditioned generation and body shape variations Figure 1 and the Appendix
demonstrate the outcomes of pose-conditional mesh generation and body shape vari-
ation using DiffSurf. When provided with different 3D joint locations while sampling
from the same mesh noise input, DiffSurf can generate various poses of the same body
mesh. Variations in body shape are realized by altering the mesh noise input.

Shape morphing In Figs. 1, 5 (left), 7 (right) and the Appendix, we present morphing
results produced by DiffSurf, where two meshes are interpolated in the Gaussian noise
space. In contrast to linear interpolation of 3D vertex coordinates in the 3D Euclidean
space, which results in a straight-line interpolation trajectory leading to the artifacts
such as arm shrinkage and hand expansions, DiffSurf yields visually plausible inter-
polation outcomes (see Fig. 7 right). Since LIMP is an approach that learns from a
small amount of meshes (in static poses), its pose representation capability is limited.
As shown in Fig. 5 (left), this approach can morph between two objects with different
shapes, such as horse and dog, which showcases the ability of DiffSurf for handling
body shapes and poses together and its potential for becoming a viable alternative to
prior nonlinear and data-driven morphing techniques [22, 23].

Control point deformation Figure 4 (right) illustrates the results of control point de-
formation. In these examples, five control points are specified at the head, wrists and
ankles and the deformation begins with the rest pose. Through gradient-based optimiza-
tion and progressively decreasing diffusion time steps, the mesh is refined to a pose that
conforms to the control points without distortions.

Human mesh recovery from image Figure 6 visualizes the mesh recovery results on
the 3DPW dataset obtained by DiffSurf. Even though DiffSurf is trained without image-
mesh paired data, it produces visually pleasing results without noticeable artifacts.
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Fig. 7: Qualitative comparisons with previous techniques are presented. Left: comparison of un-
conditional generation results. Right: comparison of morphing results against linear interpolation
in 3D Euclidean space and LIMP.

Table 1: Comparisons with baseline models on unconditional human generation. The RA-1-NNA
metric [%] assesses the diversity and quality of generated results. A lower value on this metric
signifies superior performance. SD indicates the standard deviation.

SURREAL DFAUST
Random SMPL (SD×0.2) 81.1 92.8
Random SMPL (SD×1.0) 67.2 71.4
Random SMPL (SD×3.0) 71.6 95.4

VPoser [58] 60.7 70.2
Parametric Diffusion 59.6 76.2

*Trained on AMASS

Train
Test

SURREAL DFAUST

GDVAE [3] SURREAL 93.8 98.1
LIMP [18] FAUST 81.3 93.3
DiffSurf SURREAL 54.4 69.6
DiffSurf AMASS 54.0 69.5

5.4 Comparisons

Unconditional human mesh generation Here, DiffSurf is compared against five base-
lines. We employ parametric baseline approaches: Random SMPL which draws SMPL
body shape/pose parameters randomly from ×[0.2, 1.0, 3.0] the standard deviations of
AMASS parameter collections to generate human body meshes; VPoser [58] which
learns pose priors with VAEs; parametric diffusion transformer that generates SMPL
parameters. We also compared DiffSurf with the previous generative models for sur-
faces based on VAEs: GDVAE [3] and LIMP [18].

Figure 7 presents a qualitative comparison, while Table 1 provides quantitative com-
parisons using the RA-1-NNA metric. As shown in Table 1, naively producing body
meshes from random SMPL parameters proved to be far inferior to our approach. Diff-
Surf also outperforms VPoser and parametric diffusion, which use rotational parametriza-
tion of pose that is usually difficult to learn with neural networks. Since GDVAE relies
on a point cloud representation, the results exhibit outliers especially around hands and
feet (see Fig. 7). LIMP is based on mesh representation and preserves mesh structure by
maintaining both extrinsic and intrinsic surface properties. However, LIMP’s diversity
in body poses and shapes appears to be constrained, likely due to its training strategy
relying on a limited dataset. As both methods are based on MLP-based VAEs, their
generated sample quality is not as high as that produced by DiffSurf.
Human mesh recovery from image Table 2 presents a comparison of our method
with previous human mesh recovery approaches, which are divided into parametric and
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vertex-based categories, on the 3DPW and Human3.6M datasets. Note that none of
methods used the 3DPW dataset in training. DiffSurf achieves top-level performances
among vertex-based approaches. Our method is also comparable to recent diffusion
based methods [14, 42], even though ours is not trained end-to-end on image-mesh
paired dataset. Since DiffSurf does not explicitly relate its generation to an image, per-
formance is affected by random input mesh noise ϵxθ that possibly alters body styles and
twisting joint angles of generations. We show in the Appendix how multiple hypotheses
on the input mesh noise can further possibly improve DiffSurf’s performance.
3D Human mesh fitting to 2D keypoints Table 3 shows a comparison of optimization
approaches that fits a mesh with ground truth (GT) 2D keypoints. With our SDS-based
approach, the MPVPE and PA-MPJPE errors for both parametric and vertex-based mesh
recovery techniques decrease, outperforming the previous fitting approaches that uti-
lized GT keypoints [8, 32, 39, 74]. In fact, PA-MPJPE dropped by approximately 2pts
and 9pts for HMR-EFT [32] and METRO [43], respectively. These results suggest that
DiffSurf can potentially aid in the creation of an image-mesh paired dataset with im-
proved alignment between images and meshes.

Table 2: Comparisons with other 3D human mesh
recovery approaches on 3DPW. No fine-tuning on
3DPW performed.

Method 3DPW Human 3.6M
MPVE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓

Pa
ra

m
et

ri
c

SPIN [37] 116.4 59.2 62.5 41.1
ProHMR [39] — 59.8 — 41.2

OCHHuman [35] 107.1 58.3 — —
DiffHMR [49] 110.9 56.5 — —
HMR-EFT [32] — 54.3 — —

PARE [36] 97.9 50.9 76.8 50.6

V
er

te
x-

ba
se

d METRO [43] 119.1 63.0 54.0 36.7
Pose2Mesh [16] 106.3 58.3 64.9 46.3

GATOR [87] 104.5 56.8 64.0 44.7
HMDiff [42] — — 49.3 32.4

DiffSurf 108.0 53.7 48.9 36.1
DiffSurf-EFT 102.6 52.6 50.1 36.9

Table 3: Comparisons with previous
fitting approaches on 3DPW. GT 2D
keypoints are used.

Method MPVE ↓ PA-MPJPE ↓
SMPLify [8] — 106.1

LearnedGD [74] — 55.9
ProHMR + fitting [39] — 55.1

HMR-EFT + EFT fitting [32] — 53.7
HMR-EFT [32] + SDS fitting 98.6 52.1
METRO [43] + SDS fitting 103.0 54.2

DiffSurf + SDS fitting 93.7 48.7

5.5 Ablation studies

Network architectures To conduct the ablation study on our diffusion transformer
model’s components, we modified the elements within it and compared their perfor-
mances. The basic network architecture from which we started is an adaptation of U-
ViT [4], tailored to handle 3D mesh and body joint tokens (see Table 4a, top row). We
investigated the impacts of long skip connections, different methods of incorporating
time embedding, position embedding constructions and the effect of varying the net-
work layer types (transformer or MLPs). As shown in Table 4a, the switch in the layer
type from transformer to MLPs yields the most significant impact, indicating that the
most critical component of DiffSurf is the transformer layer. As opposed to U-ViT [4]
for image generation, the use of long skip connection does not contribute to improving
3D human mesh generation. This may be attributed to the fact that the current form
of the diffusion transformer in DiffSurf primarily processing coarse-level mesh ver-
tices. Expressive human body generation that incorporates fine-grained details like fin-
ger poses and facial expressions could potentially benefit from long-skip connections.
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Table 4: Ablation studies: (a) Network components. Errors are measured for unconditional hu-
man generation using the RA-1-NNA metric on the SURREAL dataset; (b) Sampling time steps.
Errors are measured for 3D human mesh recovery on the 3DPW dataset with a CFG weight
sg = 1.0; (c) CFG scale factor sg. The error is measured by PA-MPJPE↓ on the 3DPW and
H3.6M datasets with 10 DDIM sampling time steps.

(a) Ablation study on network components.
Layer Pos emb Time emb Long skip 1NNA ↓

Transformer Learned Token Yes 55.6
Transformer Learned Token No 54.4
Transformer Learned Add Yes 55.4
Transformer 3D Template Token Yes 54.8

MLP Learned Token Yes 92.6

(b) Ablation study on sampling time steps.
1 3 5 10 20 30 100

MPVE ↓ 230.4 115.8 107.3 105.4 105.8 106.1 106.9
PA-MPJPE ↓ 143.9 60.2 55.6 54.3 54.1 54.2 54.7

fps 35.9 32.05 25.25 21.2 13.6 8.81 3.38

(c) Ablation study on CFG scale factor.
sg = 0.0 0.1 0.3 0.5 1.0

3DPW 52.6 52.6 52.9 53.3 54.3
H3.6M 37.9 37.0 36.2 36.1 36.7

Sampling timesteps Table 4b presents an ablation study on the sampling timesteps
for 3D human mesh recovery from an image. It is observed that an increase in the
sampling timesteps leads to a decrease in MPVPE and PA-MPJPE, reaching optimal
performance at approximately 10-20 steps. We also measured the inference time with
respect to sampling timesteps. In this configuration, DiffSurf operates at nearly real-
time speed, approximately 20 FPS, when performing DDIM sampling with 10 steps.
Furtheremore, the sampling speed of unconditional human generation with 431 vertices
were 37, 9 and 1.5 fps for 10, 50 and 250 DDIM sampling steps, respectively. The
sampling speed of man-made objects generation (2048 points) were 17.8, 3.5 and 1.8
fps for 10, 50 and 100 DDIM sampling steps, respectively, which is roughly 7× faster
than LION [91] with DDIM sampling. Our experiments were conducted on an NVIDIA
A100 GPU with the Flash Attention layer enabled [19].
CFG scale factor Table 4c presents the ablation study on the CFG scaling factor sg
for 3D human mesh recovery from an image. For Human 3.6M, a value up to around
1 leads to improvements. On the other hand, we observed that increasing the CFG fac-
tor negatively impacts mesh reconstruction on the 3DPW dataset. This discrepancy is
likely due to the difference in the accuracy of 3D pose regressors and the frequency
of occlusions associated with each dataset. In general, the 3D joint estimation results
on Human3.6M are more accurate and reliable than those on 3DPW. This is because
the Human3.6M dataset is captured in a controlled experimental environment and is
included in the training, whereas 3DPW is an in-the-wild dataset and not used as the
training data. DiffSurf provides a method to consider the accuracy and reliability of
the 3D joint prediction by balancing between diffusion model priors and 3D body joint
conditions through the CFG scaling factor.

6 Conclusion

We presented DiffSurf, a denoising diffusion transformer model for generating 3D sur-
faces in diverse body shapes and poses. DiffSurf can generate 3D surfaces for a wide
range of object types and solve various downstream 3D processing tasks. In future work,
we aim to extend DiffSurf towards the generation of expressive human body meshes
with fine-grained details, such as facial expressions and finger poses. It would also be
intriguing to design a foundational 3D generative model by increasing the capacity of
DiffSurf and training it on a larger-scale 3D data.
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