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Abstract— Object-goal navigation is a challenging task that
requires guiding an agent to specific objects based on first-
person visual observations. The ability of agent to comprehend
its surroundings plays a crucial role in achieving successful
object finding. However, existing knowledge-graph-based navi-
gators often rely on discrete categorical one-hot vectors and
vote counting strategy to construct graph representation of
the scenes, which results in misalignment with visual images.
To provide more accurate and coherent scene descriptions
and address this misalignment issue, we propose the Aligning
Knowledge Graph with Visual Perception (AKGVP) method
for object-goal navigation. Technically, our approach introduces
continuous modeling of the hierarchical scene architecture and
leverages visual-language pre-training to align natural language
description with visual perception. The integration of a con-
tinuous knowledge graph architecture and multimodal feature
alignment empowers the navigator with a remarkable zero-shot
navigation capability. We extensively evaluate our method using
the AI2-THOR simulator and conduct a series of experiments
to demonstrate the effectiveness and efficiency of our navigator.
Code available: https://github.com/nuoxu/AKGVP .

I. INTRODUCTION

Object-goal navigation [1], [2] presents a formidable
challenge as agents endeavor to navigate unfamiliar and
dynamic environments based on visual observations to locate
specific objects. However, traditional approaches encounter
difficulties in locally visible settings due to the absence
of spatial layout information, impeding efficient navigation.
Achieving successful object-goal navigation necessitates sur-
passing robust perception and enabling agents to possess a
comprehensive understanding of their surroundings, empow-
ering them to make intelligent decisions to accomplish their
goals. This calls for a seamless integration of perception,
language, and action, where agents adapt their navigational
strategies based on real-time visual input, language instruc-
tions, and sensory feedback. Successful visual navigation
hinges upon mapping visual observations to actions and
teaching machines to perceive objects, infer attributes, and
reason about relationships. Agents must exhibit enhanced
abilities to reason, plan, and execute goal-directed actions
that remain adaptable to dynamic environmental changes.
Consequently, learning informative visual representations
and modeling Semantic Maps [3] or Knowledge Graphs
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Fig. 1. The core idea of our AKGVP method. In order to effectively
describe the same environment, we can leverage two modalities of data:
knowledge graphs derived from natural language descriptions and obser-
vation images characterized by visual descriptions. Our primary objective
is to align these two modalities within a shared feature space, facilitated
by visual-language pre-training. Ultimately, these modalities are fused for
decision-making.

[4] of the scenes become indispensable for augmenting
performance in unfamiliar environments.

Object-goal navigators encompass three primary cate-
gories: end-to-end methods, knowledge-graph-based meth-
ods, and semantic-map-based methods. In the end-to-end ap-
proach, agents gather observations (including RGB images,
depth, and pose) from the environment at each time step.
Utilizing these inputs and object categories, agents employ
various temporal models, such as RNNs [5], LSTMs [6], [7],
[8], [9], [10], memory-based models [11], or even without
explicit temporal modeling [12], [13], [14], to determine
the subsequent actions. The end-to-end approach exclusively
relies on inputs like RGB images for direct action gener-
ation. Nevertheless, it often struggles with generalizing in
complex scenarios. To overcome this challenge, researchers
have introduced additional modeling techniques, such as
knowledge graphs [15], [16], [17], [18] and semantic maps
[19], [20], [21], [22], [23]. Knowledge graphs provide ro-
bust representation capabilities, capturing entity correlations
and contextual information. Graph structures integrate vast
amounts of structured and semi-structured data. In contrast,
semantic maps enable spatial perception, describing entity
positions, directions, and geometry. They offer real-time
updates, aiding rapid adaptation in dynamic environments.
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Nevertheless, the existing knowledge-graph-based naviga-
tors suffer from a significant drawback, primarily stemming
from their extensive dependence on discrete categorical
vectors and vote-counting strategy for constructing graph
representation of the scenes. Unfortunately, this approach
frequently leads to a misalignment between these categorical
representations and the actual visual images of the scene.
Relying solely on decision-making losses, such as reinforce-
ment learning, proves challenging in effectively aligning the
two modalities. Addressing this limitation is of paramount
importance in order to enhance the performance and accuracy
of object-goal navigators in real-world scenarios. With this
in mind, our research endeavors to push the boundaries of
knowledge-graph-based navigators by focusing on improving
their capabilities and overall performance.

To address the aforementioned challenges, we propose
the Aligning Knowledge Graph with Visual Perception
(AKGVP) for object-goal navigation. As depicted in Fig. 1,
our approach introduces a continuous modeling framework
that captures the hierarchical knowledge-graph-based scene
architecture, leading to more accurate and coherent scene
descriptions. Additionally, we leverage visual-language pre-
training techniques to align scene language description
with visual perception, bridging the gap between semantic
graph and visual understanding. This alignment enhances
the comprehension of instructions and scenes for agent
within the context of navigation tasks, enabling a more
refined representation of the visual environment. Moreover,
the integration of a continuous knowledge graph architecture
and multimodal feature alignment empowers the navigator
with a remarkable zero-shot navigation capability [24], [10],
[23]. In this work, we extensively evaluate the effectiveness
and efficiency of our proposed AKGVP method using the
AI2-THOR [25] simulator, a widely adopted platform for
embodied navigation research. Through a series of rigorous
experiments, we demonstrate the superior performance of
AKGVP in achieving object-finding tasks. The contributions
of this research are as follows:
• A novel continuous knowledge-graph-based scene mod-

eling framework is introduced that captures the intricate
hierarchical scene architecture, resulting in more accurate
and coherent scene descriptions.

• Moreover, one visual-language pre-training technique is
leverage advanced to effectively align scene language de-
scriptions with visual perception, proposing our Aligning
Knowledge Graph and Visual Perception (AKGVP).

• In this study, we extensively evaluate the effectiveness and
efficiency of our proposed AKGVP using the AI2-THOR
simulator. Through rigorous experiments, the superior per-
formance of AKGVP is demonstrated.

II. METHODOLOGY

In the Object-goal Navigation (ObjNav) task, the agent is
situated within the 3D indoor environments Q and aims to
efficiently approach predefined goal objects G in the fewest
steps. During each episode, the agent is randomly initialized
at position l = {x, z, θ1, θ2} within the environment q ∈ Q.

Here, (x, z) represents the plane coordinates, while θ1 and
θ2 correspond to the yaw and pitch angles, respectively.
At each timestamp t, the agent learns a policy function
denoted as π(at|st, g), which predicts the appropriate action
at ∈ A based on the current state (first-person observation)
st and the goal object g ∈ G. Here, A = {MoveAhead,
RotateLeft, RotateRight, LookDown, LookUp, Done}.
Notably, the agent independently determines the completion
of an action, relying on its own judgment rather than en-
vironmental cues. The movement of agent occurs within a
discretized scene space with intervals of 0.5m. The rotation
and the vertical tilt angle remain fixed at 45 and 30 degrees,
respectively. An episode is deemed successful when the agent
selects the Done action while the goal object is visible within
a threshold distance of 1.5m, indicating proximity. Failure
occurs if the agent does not meet this criterion.

A. Overview

As illustrated in Fig. 2, the AKGVP framework consists
of three indispensable components: an aligned encoder, a
high-level controller, and a low-level controller. The aligned
encoder assumes a critical role in separately encoding im-
ages and natural language, facilitating the alignment of
features through multimodal pre-training. Harnessing knowl-
edge graph modeling, the high-level controller adeptly plans
sub-goals for the navigator, effectively guiding the movement
of agent across diverse zones. In parallel, the low-level
controller leverages the fused multimodal information to
make well-informed action decisions, enabling the agent to
interact with the environment and exert precise control over
its movements. Fig. 2 offers a visual depiction of the intricate
interplay between these components within the AKGVP
framework. In the subsequent sections, we will delve into
the detailed exposition of each of these three components.

B. MultiModal Feature Alignment

In this section, we present the aligned encoder, a pivotal
component responsible for vision-language alignment and
feature extraction.
Multimodal Pre-training. Multimodal pre-training, exem-
plified by the pioneering CLIP [26] model, represents a tech-
nique wherein a model is trained on diverse modalities, such
as images and natural language, fostering the acquisition of
rich representations that capture intermodal correlations. This
pre-training paradigm is designed to empower the model
with the ability to comprehend and reason about the intricate
relationships existing between visual and textual information.
Through pre-training, CLIP learns to establish associations
between images and text via the juxtaposition of positive
pairs (matching image-text pairs) against negative pairs (non-
matching pairs). This process effectively encourages the
model to align similar images with their corresponding
textual descriptions within a shared feature space.
Aligned Encoder. In fact, CLIP (ResNet-50 [27]) is applied
in the Aligned Encoder module within the AKGVP model,
comprising two components: the visual encoder and the lan-
guage encoder. To preserve the spatial position information
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Fig. 2. Pipeline of our AKGVP method. AKGVP is composed of three essential components: an aligned encoder, a high-level controller, and a low-level
controller. The encoder plays a crucial role by separately encoding images and natural language, facilitating feature alignment through multimodal pre-
training. The high-level controller leverages knowledge graph modeling to effectively plan sub-goals for the navigator, directing the movement of agent
across different zones. On the other hand, the low-level controller utilizes the fused multimodal information to make informed action decisions, enabling
the agent to interact with the environment and control its movements adeptly.

in the image, the last fully connected layer of the visual
encoder is removed, while the language encoder remains
intact. During training, the parameters of the aligned encoder
are consistently frozen, requiring no updates. As depicted in
Fig. 2, the Image Feature fimg is represented as a 7×7×2048
tensor, while the Object Feature fobj is a continuous 1024-
dimensional vector. These architectural choices contribute to
the efficient encoding and representation of visual and textual
information in AKGVP. In contrast, conventional knowledge-
graph-based navigators [15], [16], [17], [18] frequently em-
ploy discrete one-hot vectors to represent objects in the
scene, lacking alignment with visual perception. The applica-
tion of CLIP presents compelling advantages, including the
cultivation of robust representations, improved generalization
capabilities, and zero-shot ability. These advantages will
collectively augment the capacity of the model to navigate
towards the desired goal object in a more cognizant and
efficient manner, in the realm of object-goal navigation.

C. Knowledge Graph Modeling

The high-level controller leverages Graph Convolutional
Networks (GCNs) [28] to extract prior information from the
knowledge graph. This extracted high-level semantic knowl-
edge serves as a valuable guide for the agent to navigate and
explore unknown environments more effectively, using the
power of the knowledge graph.
Spatial Location Clustering. In order to construct a com-
prehensive knowledge graph that captures the object distri-
bution within the training environment q ∈ Q, the agent
meticulously explores all positions l = {x, z, θ1, θ2}. At each
position (x, z), the agent diligently detects the presence of
each goal object gk ∈ G within its observations by Faster
RCNN [29], meticulously recording this crucial information

using f(x,z). The detection results from various viewing
angles (θ1, θ2) will be averaged when sharing the same
coordinates (x, z).

f(x,z) =
1

|θ1||θ2|
∑

k αk

∑
θ1,θ2,k

αkfobj,k. (1)

where αk signifies the presence of the goal object gk within
the observation field of view. It takes the value of 1 if the
object is visible and 0 otherwise. fobj,k denotes the Object
Feature associated with the goal object gk. Additionally, |θ1|
and |θ2| represent the total choices of yaw and pitch angles,
respectively. It is worth noting that scenes with similar char-
acteristics often exhibit a recurring pattern of typical regions
adorned with similar object types and layouts. For instance,
a bedroom typically encompasses an area comprising a bed,
a chest, and pillows, forming a distinctive arrangement.
In these analogous scenes, we employ K-Means clustering
techniques to group the recorded information f(x,z) cor-
responding to each spatial coordinate (x, z) across each
room. This process effectively divides the room into distinct
zones {Zm|(xi, zi) ∈ Zm,m = 1, · · · ,M}, reflecting the
underlying variations in object distribution and facilitating
more granular analysis of the environment.
Graph Definition. We denote our knowledge graph as
Ω = (V,E), where V represents the nodes and E represents
the edges connecting the nodes. In our specific case, e.g.,
a certain room, each node vm ∈ V corresponds to each
zone Zm with its cluster center δ(vm). Meanwhile, each edge
e(vm, vn) ∈ E captures the adjacent probability between two
zones (Zm, Zn).

δ(vm) = fZm
=

∑
(xi,zi)∈Zm

f(xi,zi)

|Zm|
. (2)



e(vm, vn) =

∑
(xi,zi)∈Zm

∑
(xj ,zj)∈Zn

dij

|Zm||Zn|
,

dij = I[|xi − xj |+ |yi − yj | ≤ ϵ].

(3)

where |Zm| is the element number, I[·] is an indicative
function, and ϵ is a hyper-parameter threshold. If the condi-
tion inside the brackets is satisfied, I[·] equals 1; otherwise,
it equals 0. Given the fixed number of regions M , the
knowledge graph of each room exhibits a similar structure.
To align the knowledge graphs across different rooms within
the same kind of scene (e.g., living room, kitchen, bedroom,
and bathroom), we employ the Kuhn-Munkres algorithm
for pairwise matching. Subsequently, we merge the nodes
and edges by averaging their values, ensuring a cohesive
representation across the diverse rooms within the scene.
It is important to note that traditional knowledge-graph-
based navigators [15], [16], [17], [18] construct nodes using
discrete one-hot vectors and vote counting strategy, which
fails to fully exploit the information contained in the natural
language modality. As a result, these models exhibit lim-
ited generalization ability. In contrast, our knowledge graph
employs continuous feature representations, enabling more
powerful zero-shot generalization.
Graph Adaptation. Building precise representations of
every specific scene is challenging, especially in new, unfa-
miliar environments with varying layouts. To address this, we
dynamically update the node features of the initial knowledge
graph based on real-time first-person observations. This pro-
cess enables the initial knowledge graph with general prior
information to evolve and adapt to the current environment.

δ(V t) = λfZC
fT
(xt,zt)

+ (I − λfZC
fT
ZC

)δ(V t−1). (4)

where matrix V 0 ∈ RM×N encapsulates the attributes of all
nodes V in the knowledge graph Ω = (V,E) at time stamp
t = 0, fZC

describes the node features of the zone ZC where
the agent is currently located refers to Eq. (2), and N is the
feature length, which is 1024. The proximity between the
current observation feature f(xt,zt) and the cluster centers
can be computed, enabling the identification of the closest
cluster center, which serves as the current region ZC . Note
that, the observed feature f(xt,zt) here is not required to
traverse all views (θ1, θ2) of the same location (x, z). In
addition, λ represents a trainable parameter that governs the
global impact of the currently observed feature f(xt,zt) on the
knowledge graph. It is crucial to emphasize that these updates
are episode-specific, as each episode within the scenes of
the same category starts with the identical initial knowledge
graph.

D. Navigation Policy

The hierarchical navigation policy comprises high-level
and low-level controllers. The high-level controller harnesses
the power of the knowledge graph to effectively plan sub-
goals for guiding the movement of agent across diverse
regions. In parallel, the low-level controller leverages the
integrated multimodal input to exhibit motion control.
High-level Controller. This paper defines the target zone
ZT as the region in the initial knowledge graph with the

highest probability of containing the target object g. The
objective of the agent is to plan a path that starts from
the current zone ZC and reaches the target zone ZT with
the maximum connection probability, which is calculated as
the product of all edges along the path

∏
t et. By doing so,

real-time planning of sub-goal zones ZS becomes possible.
Meanwhile, we leverage the power of GCN, a specialized
neural network designed to process graph-structured data.
GCN provides an effective framework for modeling and com-
prehending intricate relationships within knowledge graphs.
The GCN output generates node-level representations while
preserving the number of nodes and the length of node
features. In Fig. 2, the output Graph Feature fgra ∈ R1024 of
the high-level controller refers to a specific node feature ex-
tracted from the GCN output, corresponding to the sub-goal
zone. With the utilization of GCN, our approach enables the
agent to make informed decisions based on the understanding
of complex relationships within the knowledge graph. By
incorporating GCN into our framework, we enhance the
ability of agent to plan paths towards sub-goals in a more
efficient and effective manner.
Low-level Controller. Similar to the traditional knowledge-
graph-based navigators, AKGVP incorporates LSTM to
model the low-level controller and learn the policy
π(at|st, g). The network takes a concatenation of Image
Feature fimg , Object Feature fobj , Graph Feature fgra, and
Previous Action fact as input. Among them, fact is the
historical action of the last timestamp decision by agent,
represented by a 6-dimensional one-hot vector. To optimize
the performance of the low-level controller, we employ the
A3C [30] algorithm within the framework of reinforcement
learning. This algorithm enables effective training and pol-
icy optimization, empowering the agent to make informed
decisions and navigate efficiently within the environment.

III. EXPERIMENTS

A. Experimental Setup

Datasets. We evaluate the efficacy of our approach using
AI2-THOR [25] simulator, renowned for its provision of
highly realistic 3D indoor scenes with near-photographic
observations. The AI2-THOR dataset encompasses a di-
verse collection of 120 scenes across four categories: living
room, kitchen, bedroom, and bathroom, featuring a wide
range of 22 kinds of goal objects {AlarmClock, Book,
Bowl, CellPhone, Chair, CoffeeMachine, DeskLamp, Floor-
Lamp, Fridge, GarbageCan, Kettle, Laptop, LightSwitch,
Microwave, Pan, Plate, Pot, RemoteControl, Sink, Stove-
Burner, Television, Toaster}. Each scene includes a minimum
of 4 goal objects. Following the conventions set by prior
research [9], [11], [17], [18], we allocate 20 rooms for
training, 5 for validation, and 5 for testing purposes, ensur-
ing a consistent and fair experimental setup. Furthermore,
to validate the zero-shot capability of the navigators, we
deliberately excluded the six goal objects {Bowl, DeskLamp,
Laptop, LightSwitch, Plate, StoveBurner} from the training
set. Consequently, the test set exclusively focuses on evalu-
ating the performance with respect to these six specific goal



objects. This allows us to assess the generalization ability of
navigators in dealing with unseen objects.
Settings. In the framework setting, a reward system is
introduced aimed at minimizing the trajectory length to the
goal. Specifically, when the agent successfully reaches the
goal object within a specified number of steps, it receives
a significant positive reward of 5. Conversely, for each step
taken towards the goal without reaching it, a small negative
reward of -0.01 is imposed. For AI2-THOR-related settings,
please refer to Sec. II. Adam optimizer is adopted to update
the network parameters with a learning rate of 10−4. To
train our models, a total of 6 million episodes is conducted,
ensuring that each episode involves randomly selecting the
starting position and goal for the agent.
Evaluations. We conducted a rigorous evaluation by con-
ducting experiments in triplicate, and the reported results are
presented as mean ± standard deviation. To assess the perfor-
mance of our approach, we selected three evaluation metrics:
Success Rate (SR), Success weighted by Path Length (SPL),
and Distance to Goal (DTS). In the tables below, an upward
arrow (↑) indicates that a higher value is desirable, while a
downward arrow (↓) indicates that a lower value is preferred.
SR evaluates the ability of agent to successfully locate the
target object, while SPL takes into account both success rate
and path length. DTS quantifies the distance between the
agent and the goal at the end of each episode.

B. Performance Analysis

To provide comprehensive evidence of the superiority
of AKGVP, we conduct both qualitative and quantitative
analyses, comparing it with the State-Of-The-Art (SOTA)
navigators, e.g., HOZ [17] and L-sTDE [18]. The quanti-
tative results are presented in Tab. I and Tab. II, while the
qualitative results are depicted in Fig. 3. In Tab. I and Tab. II,
AKGVP-Base refers to the algorithm described earlier, while
AKGVP-CI, based on the AKGVP-Base version, incorpo-
rates the L-sTDE [18] method by using the causal inference
algorithm to eliminate the prediction bias brought by the
experience, e.g., prior knowledge from the knowledge graph.
These analyses offer a thorough evaluation and highlight the
advantages of AKGVP in ObjNav tasks.
General Navigation Performance. As depicted in Tab. I,
our proposed AKGVP method showcases outstanding perfor-
mance in the regular ObjNav task when compared to SOTA
navigators. Specifically, AKGVP-CI achieves the highest
success rate (SR) of 76.78% and the shortest distance to
the goal (DTS) of 0.35m, surpassing the L-sTDE method
by 2.59% and 0.08m, respectively. Moreover, AKGVP-Base
demonstrates the highest success weighted by path length
(SPL) with a value of 40.66%. It is worth noting that the SPL
value of AKGVP-CI might not be optimal due to the agent
being in closer proximity to the target when the navigation
stops, resulting in additional steps. For evaluation purposes,
an agent is deemed successful without discrimination if it is
within a distance of 1.5m from the goal object. These results
in Tab. I collectively underline the superior performance of
our method, showcasing higher success rates and more effi-

TABLE I
GENERAL NAVIGATION PERFORMANCE COMPARISON.

Navigator SR↑(%) SPL↑(%) DTS↓(m)

Random 4.35±1.69 2.39±1.37 1.41±0.01
Baseline [12] 58.76±0.18 34.48±0.43 0.68±0.01
SP [16] 62.19±0.67 37.60±0.35 0.61±0.02
SAVN [7] 63.27±0.11 38.20±0.04 0.56±0.01
EOTP [8] 65.61±0.25 38.93±0.10 0.55±0.01
ORG [11] 66.53±0.29 39.00±0.34 0.54±0.01
ORG+TPN [11] 68.60±0.29 39.40±0.17 0.54±0.01
VTNet [9] 70.10±1.00 39.60±0.10 0.52±0.01
HOZ [17] 70.48±0.54 39.84±0.21 0.48±0.02
L-sTDE [18] 74.19±0.60 40.30±0.27 0.43±0.01

Ours AKGVP (Base) 73.63±0.56 40.66±0.22 0.44±0.02
Ours AKGVP (CI) 76.78±0.51 39.63±0.32 0.35±0.01

TABLE II
ZERO-SHOT NAVIGATION PERFORMANCE COMPARISON.

Navigator SR↑(%) SPL↑(%) DTS↓(m)

Baseline [12] 19.34±0.28 8.81±0.41 1.20±0.01
EmbCLIP [10] 44.14±0.54 15.76±0.21 0.79±0.01
HOZ [17] 47.54±0.53 15.05±0.35 0.76±0.01
L-sTDE [18] 54.75±0.60 16.64±0.31 0.62±0.02

Ours AKGVP (Base) 51.80±0.51 17.47±0.28 0.69±0.01
Ours AKGVP (CI) 69.51±0.47 28.86±0.25 0.41±0.02

cient path planning in general ObjNav task, when compared
to the baselines and other state-of-the-art approaches.
Zero-shot Navigation Performance. In comparison to the
results presented in Tab. I, the zero-shot navigation perfor-
mance demonstrated in Tab. II is particularly remarkable.
The AKGVP-CI method demonstrates robust generalization
capabilities even when encountering unknown objects. While
there is a slight decline in the performance of AKGVP-
CI compared to the general navigation scenario, with a
decrease in SR by 7.27%, an increase in SPL by 10.77%,
and a slight increase in DTS by 0.06m, the Baseline and
SOTA navigators experience more significant setbacks with
deteriorated performance indicators. Additionally, the zero-
shot navigator EmbCLIP, which solely relies on the CLIP
image encoder without utilizing the CLIP language encoder
and high-level controller, also underperforms. These results
highlight the importance of the continuous knowledge graph
architecture, as well as multimodal feature alignment, in
achieving superior performance in zero-shot navigation tasks.
Visualization and Qualitative Study. As depicted in Fig. 3,
AKGVP-CI exhibits robust generalization capabilities in both
general navigation and zero-shot navigation tasks. While the
state-of-the-art navigator L-sTDE excels in general naviga-
tion, it frequently encounters confusion in zero-shot navi-
gation, e.g., premature stops, incorrect target identification,
and progress blocked by obstacles. Furthermore, AKGVP-CI
demonstrates more precise action decision-making, ensuring
smoother and more efficient navigation trajectories.

C. Ablation Study

In this section, we conduct three types of ablation ex-
periments to investigate the impact of different pre-training
settings (Tab. III) and model components (Tab. IV) on the
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Fig. 3. Qualitative results (zoom in for detailed viewing). The visualization of navigation results for the four navigators in three rooms is presented
from left to right, along with the corresponding observations from the final frame of navigation. The red explosion icon denotes instances where the agent
becomes disoriented and exhibits erratic behavior, such as spinning in circles, getting stuck by obstacles, or repetitive small-scale rotations. The blue circle
represents the starting position, which is consistent across all four navigators. The histogram provides a visual representation of the action probabilities,
highlighting the likelihood of the agent selecting each of the six actions. For additional instances of the comparison between these two methods, please
refer to the accompanying video.

TABLE III
ABLATION STUDY ON PRE-TRAINING SETTINGS.

Pre-training Frozen Parameters SR↑(%) SPL↑(%) DTS↓(m)

ImageNet [31] ✓ 73.66 37.21 0.46
ImageNet [31] ✗ 74.12 38.31 0.43
CLIP [26] ✓ 76.78 39.63 0.35
CLIP [26] ✗ 75.86 40.97 0.40

TABLE IV
ABLATION STUDY ON MODEL COMPONENT DECOMPOSITION.

fimg fobj fgra fact SR↑(%) SPL↑(%) DTS↓(m)

✗ ✓ ✗ ✗ 9.47 1.45 1.22
✓ ✗ ✗ ✗ 16.80 2.81 1.37
✓ ✓ ✗ ✗ 69.57 37.58 0.48
✓ ✓ ✓ ✗ 73.63 38.82 0.38
✓ ✓ ✓ ✓ 76.78 39.63 0.35

overall performance of our model. The objective is to provide
insights into the key factors influencing performance.
Form of Pre-training. The purpose of this ablation exper-
iment is to assess the effectiveness of visual language pre-
training. While keeping the model structure unchanged, we
replace the visual encoder in AKGVP with the ResNet-50
[27] pre-trained on the ImageNet [31] dataset, and remove
the language encoder, thereby reverting to the one-hot en-
coding approach by the traditional navigator. The results are
recorded in Tab. III. It is evident that the algorithm with-
out multimodal pre-training alignment exhibits an average
decrease of 2.28% in SR, 2.54% in SPL, and an increase
of 0.06m in DTS compared to the aligned algorithm. This
indicates the importance and effectiveness of multimodal pre-
training for achieving superior navigation performance.
Frozen Parameters. To assess the impact of frozen param-
eters on navigation performance, an experiment is conducted
that investigated whether to freeze the parameters of the pre-
training model in Tab. III. When the pre-trained model lacks
multimodal alignment, unfreezing the parameters leads to
improved navigation performance. Specifically, the SR value
increases by 0.46%, the SPL value increases by 1.10%, and

the DTS decreases by 0.03m. In contrast, navigators that
have undergone multimodal alignment show no significant
performance gains when unfreezing the encoder parameters.
This observation indicates that the contribution of unfreezing
the parameters to training the encoder is limited.
Model Components. To investigate the impact of the four
inputs (Image Feature fimg , Object Feature fobj , Graph
Feature fgra, Previous Action fact) on the decision-making
process of the low-level controller, we conducted a series
of ablation experiments by dissecting the model structure,
as presented in Tab. IV. The results reveal that fimg and
fobj exert the most significant influence, with the removal
of either input resulting in a substantial decline in navigator
performance. On the other hand, the inclusion of sub-goal
information fgra provided by the high-level controller and
historical action information fact enhances path planning
capabilities, leading to slight improvements in navigation
performance.

IV. CONCLUSION

The contributions of this research lie in the development
of the Aligning Knowledge Graph with Visual Perception
(AKGVP) method for the ObjNav task, which addresses
the misalignment between discrete scene features and first-
person visual observations through continuous knowledge
graph modeling and visual-language pre-training. Further-
more, we provide comprehensive evaluations of AKGVP,
showcasing its superior performance and efficiency in both
general and zero-shot object-goal navigation tasks. By align-
ing language description with visual perception, AKGVP
holds promise for advancing the field of embodied intelli-
gence, enabling more accurate and effective navigation in
dynamic environments.
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