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Abstract

The statistical distribution of content uploaded and
searched on media sharing sites changes over time due to
seasonal, sociological and technical factors. We investigate
the impact of this “content drift” for large-scale similarity
search tools, based on nearest neighbor search in embedding
space. Unless a costly index reconstruction is performed
frequently, content drift degrades the search accuracy and
efficiency. The degradation is especially severe since, in
general, both the query and database distributions change.

We introduce and analyze real-world image and video
datasets for which temporal information is available over
a long time period. Based on the learnings, we devise
DEDRIFT, a method that updates embedding quantizers to
continuously adapt large-scale indexing structures on-the-fly.
DEDRIFT almost eliminates the accuracy degradation due
to the query and database content drift while being up to
100× faster than a full index reconstruction.

1. Introduction

The amount of content available online is growing expo-
nentially over the years. Various online content sharing sites
collect billions to trillions of images, videos and posts over
time. Efficient Nearest Neighbor Search (NNS) techniques
enable searching these vast unstructured databases based
on content similarity. NNS is at the core of a plethora of
practical machine learning applications including content
moderation [17], retrieval augmented modeling [10, 24],
keypoint matching for 3D reconstruction [1], image-based
geo-localisation [12], content de-duplication [44], k-NN clas-
sification [4, 11], defending against adversarial attacks [18],
active learning [15] and many others.

NNS techniques extract high dimensional feature vectors
(a.k.a. “embeddings”) from each item to be indexed. These
embeddings may be computed by hand-crafted techniques
[35, 28] or, more commonly nowadays, with pre-trained neu-
ral networks [7, 37, 36]. Given the database of embedding
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vectors D={x1, . . . , xN} ⊂ Rd and a query embedding
q ∈ Rd, NNS retrieves the closest database example to q
from D according to some similarity measure, typically the
L2 distance:

argminx∈D∥q − x∥2 (1)

The exact nearest neighbor and its distance can be computed
by exhaustively comparing the query embeddings against
the entire database. On a single core of a typical server from
2023, this brute-force solution takes a few milliseconds for
databases smaller than few tens of thousand examples with
embeddings up to a few hundred dimensions.

However, practical use cases require real time search on
millions to trillion size databases, where brute-force NNS
is too slow [14]. Practitioners resort to approximate NNS
(ANNS), trading some accuracy of the results to speed up
the search. A common approach is to perform a statistical
analysis of D to build a specialized data structure (an “index”
in database terms) that performs the search efficiently. Like
any unsupervised machine learning task, the index is trained
on representative sample vectors from the data distribution
to the index.

A tool commonly used in indexes is vector quantiza-
tion [22]. It consists in representing each vector by the near-
est vector taken in a finite set of centroids {c1, . . . , cK} ⊂
Rd. A basic use of quantization is compact storage: the vec-
tor can be reduced to the index of the centroid it is assigned
to, which occupies just ⌈log2 K⌉ bits of storage. The larger
K, the better the approximation. As typical for machine
learning, the training set T is distinct from D (usually T is a
small subset of D). The unsupervised training algorithm of
choice for quantization is k-means which guarantees Lloyd’s
optimality conditions [32].

In an online media sharing site, the index functions as a
database system. After the initial training, the index in-
gests new embeddings by batches as they are uploaded
by users and removes content that has been deleted (Fig-
ure 1). Depending on the particular indexing structure, addi-
tion/deletion may be easy [27], or more difficult [40]. How-
ever, a more pernicious problem that appears over the time
is content drift. In practice, over months and years, the sta-
tistical distribution of the content changes slowly, both for
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Figure 1. Overview of the dynamic index developed in this work. Images are continuously uploaded to a online sharing platform and their
embeddings are added to an index. At any moment, the index can be used to search for similar images. The index quantizes the embeddings
into centroids. However, as the content drifts over time, the centroids do not match the data distribution anymore. DEDRIFT introduces a
lightweight update procedure to adapt to the new data distribution.

the data inserted in the index and the items that are queried.
The drift on image content may have a technical origin,

e.g. camera images become sharper and have better contrast;
post-processing tools evolve as many platforms offer edit-
ing options with image filters that are applied to millions of
images. The drift may be seasonal: the type of photos that
are taken in summer is not the same as in winter, see Fig-
ure 2. Sociological causes could be that people post pictures
of leaderboards of a game that became viral, or there is a
lockdown period where people share only indoor pictures
without big crowds. In rare cases, the distribution may also
change suddenly, for example because of an update of the
platform that changes how missing images are displayed.
The problem posed by this distribution drift is that new in-
coming vectors are distributed differently from T . Indeed,
by design, feature extractors are sensitive to semantic differ-
ences in the content. This mismatch between training and
indexed vectors impacts the search accuracy negatively. To
address this, practitioners monitor the indexing performance
and initiate a full index reconstruction once the efficiency
degrades noticeably. By definition, this is the optimal update
strategy since it adapts exactly to the new data distribution
that contains both old and recent vectors. However, at larger
scales, this operation becomes a resource bottleneck since
all N vectors need to be re-added to the index, and disrupts
the services that relies on the index.

Our first contribution is to carefully investigate tempo-
ral distribution drift in the context of large-scale nearest
neighbor search. For this purpose, we introduce two real-
world datasets that exhibit drift. We first measure the drift in
an index-agnostic way, on exact search queries (Section 3).
Then we measure the impact on various index types that are
commonly used for large-scale vector search (Section 4).

Our second contribution is DEDRIFT, a family of adap-
tation strategies applied to the most vulnerable index types

(Section 5). DEDRIFT modifies the index slightly to adapt to
the evolution of the vector distribution, without re-indexing
all the stored elements, which would incur an O(N) cost.
This adaptation yields search results that are close to the rein-
dexing topline while being orders of magnitude faster. This
modification is done while carefully controlling the accuracy
degradation. Sections 6 reports and analyzes DEDRIFT’s
results.

2. Related work
NNS methods. In low-dimensional spaces, NNS can be
solved efficiently and exactly with tree structures like the
KD-tree [19, 33] and ball-trees [34], that aim at achiev-
ing a search time logarithmic in N . However, in higher
dimensions, due to the curse of dimensionality, the tree struc-
tures are ineffective to prune the search space, so there is
no efficient exact solution. Therefore, practitioners use ap-
proximate NNS (ANNS) methods, trading some accuracy
to improve the efficiency. Early ANNS methods rely on
data-independent structures, e.g. projections on fixed ran-
dom directions [2, 16]. However, the most efficient methods
adapt to the data distribution using vector quantization.

The Inverted File (IVF) based indexing relies on a vector
quantizer (the coarse quantizer) to partition the database
vectors into clusters [41, 27]. At search time, only one
or a few of these clusters need to be checked for result
vectors. Such pruning approach is required to search in
large datasets, so we focus on IVF-based methods in this
paper. When scaling up the coarse quantizer can become
the computation bottleneck. Several alternatives to plain
k-means have been proposed: the inverted multi-index uses
a product quantizer [6], graph-based indexes [8] or residual
quantizers can also be used [13].

Out-of-distribution (OOD) vectors w.r.t the training dis-
tribution are detrimental to the search performance [39]. For
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Figure 2. Per row: sample YFCC images that are typical for some
months. Refer to 3.3 for how the images were selected.

IVF based methods, they translate to unbalanced cluster
sizes, which incurs a slowdown that can be quantified by an
imbalance factor [26]. In [47], OOD content is addressed
before indexing with LSH by adapting a transformation ma-
trix, but LSH’s accuracy is limited by its low adaptability
to the data distribution. Graph-based pruning methods like
HNSW [46] also suffer from OOD queries [25]. In this work,
our focus is not on graph-based indexes since they do not
scale as well to large datasets.
Database drift. In the literature, ANNS studies are primar-
ily on publicly available offline vector databases where the
distribution of query and database examples are fixed and
often sampled from the same underlying data distribution
[29, 5]. However, these assumptions do not typically hold
for real world applications. Not only the query frequency
and database size, but also their distributions may drift over
time. Recent works [45, 31] simulate this setting and pro-
pose adaptive vector encoding methods. In our work, we
collect the data with natural content drift and observe that
vector codecs are relatively robust to content changes, as
opposed to IVF-based indexing structures. Another work [9]
adapts the k-means algorithm to take the drift into account.
Though this method can improve the performance of IVF
indexes, it still requires full index reconstruction.

3. Temporal statistics of user generated content
We present the two representative datasets and report

some statistics about them.

3.1. Datasets

We introduce two real-world datasets to serve as a basis
for the drift analysis. In principle, most content collected
over several years exhibits some form of drift. For the dataset
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Figure 3. Number of vectors per month (left) and per day on a
smaller time span (right).

collection, the constraints are (1) the content should be col-
lected over a long time period (2) the volume should be
large enough that statistical trends become apparent (3) the
data source should be homogeneous so that other sources
of noise are minimized (4) of course, timestamps should be
available, either for the data acquisition or the moment the
data is uploaded.

The VideoAds dataset contains “semantic”1 embeddings
extracted from ads videos published on a large social me-
dia website between October 2020 and October 2022. The
ads are of professional and non-professional quality, pub-
lished by individuals, small and large businesses. They were
clipped to be of maximum 30 seconds in length. The video
encoder for the video ads consisted of a RegNetY [38] frame
encoder followed by a Linformer [43] temporal pooling layer
which were trained using MoCo [23], resulting in one embed-
ding per video. The dataset contains 86M L2-normalized
embeddings in 512 dimensions.

The YFCC dataset [42] contains 100M images and videos
from the Yahoo Flickr photo sharing site. Compared to
typical user-generated content sites, Flickr images are of
relatively good quality because uploads are limited and users
are mostly pro or semi-pro photographers. We filter out
videos, broken dates and dummy images of uniform color,
leaving 84M usable images spanning 7 years, from January
2007 to December 2013. As a feature extractor, we use a
pretrained DINO [11] model with ViT-S/16 backbone that
outputs unnormalized 384-dimensional vectors. As DINO
embeddings have been developed for use as k-NN classifiers,
their L2 distances are semantically meaningful.

Before evaluations, we apply a random rotation to all
embeddings and uniformly quantize them to 8 bits to make

1We call “semantic” embeddings that are intended for input to classifiers.
In contrast, copy detection embeddings identify lower-level features useful
for image matching [36].
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Figure 4. Pairwise similarity matrices between the embeddings over
a time period subdivided in steps (1 month for VideoAds and 3
months for YFCC). Blue and yellow correspond to low and high
similarities, respectively. Both datasets have noticeable distribution
drift over time. In addition, YFCC has clear seasonal correlations.

them less bulky. These operations have almost no impact
on neighborhood relations. We do not apply dimensionality
reduction methods, e.g., PCA, since it can be considered as
a part of the indexing method and explored separately.

3.2. Volume of data

First, we depict daily and monthly traffic for both datasets
in Figure 3. For VideoAds, the traffic is lower during week-
ends and slightly increases over 2 years. For YFCC, the
traffic is higher on weekends than on weekdays. This pattern
is due to the professional vs. personal nature of the data.

Over the years, the amount of content also grows for
both datasets, following the organic growth of online traffic.
Interestingly, for YFCC, we observe minimum traffic in
January and maximum in July. In the following, we use
subsampling to cancel the statistical effect of data volume.
Unless stated, we use a monthly granularity because this is
the typical scale at which drift occurs.

3.3. Per-month similarities

We start the analysis of temporal distribution drift by
visualizing pairwise similarities between months i and j.
For each month, we sample a random set Φi = {ϕ1

i , .., ϕ
n
i }

of |Φi|=105 embeddings. Then, we compute the similarity
between Φi and Φj by averaging nearest-neighbor distances:

d(x,Φj) =
1

L

L∑
ℓ=1

∥x−NNℓ(x,Φj)∥2 (2)

S(Φi,Φj) = − 1

|Φi|
∑

ϕi∈Φi

d(ϕi,Φj), (3)

where L=100 and NNℓ(x,Φ) is the ℓ-th nearest neigh-
bor of x in Φ. Note that the similarity is asymmetric:
S(Φi,Φj )̸=S(Φj ,Φi) in general. Figure 4 shows the simi-
larity matrices for VideoAds and YFCC datasets. The analy-
sis with daily and weekly granularities is in Appendix A.
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Figure 5. Monthly provenance of the top-10 vectors for queries
from a given month.

We observe that the ads data changes over time but does
not have noticeable patterns. YFCC content drifts over years
and has a strong seasonal dependency. Figure 2 presents im-
ages from YFCC for different seasons2 the seasonal pattern
is caused by images of outdoor sceneries (e.g., snow and
foliage), seasonal activities (e.g., yachting) or holidays (e.g.,
Halloween and Christmas). Appendix B studies the impact
of these monthly similarity patterns on the distribution of
quantization assignments.

3.4. Temporal distribution of nearest neighbors

In this experiment, we investigate the distribution of the
nearest neighbors results over predefined time periods. We
consider queries Φi for month i and search exact top-k
(k=10) results in Φi−1 ∪ ... ∪ Φi−m (m=12 for VideoAds
and m=36 for YFCC). Figure 5 shows how many of the
|Φi|×k nearest neighbors come from each of the m previ-
ous months for a few settings of the reference month i. We
observe that recent content occurs more often in the results
for both datasets. Also, for YFCC, there is a clear seasonal
trend, i.e. content from the same season in years before is
more likely to be returned. This hints at a drift because if
the vectors were temporally i.i.d. search results would be
equally likely to come from all previous m months.

4. Content drift with static indexes
In this section, we assess the effect of content drift for

various index types.

4.1. Experimental setting

The evaluation protocol follows a common use case,
where the most recent content is used as query data against
a backlog of older content.

2The images for the month i were selected as follows: a quantizer of
size K = 4096 is trained on Φ0. Vectors from Φi and Φi−3 are assigned
to the K centroids independently. We visualize six random images from
one of the top-8 clusters where the size ratio between assignment i over
assignment i−3 is the largest. Out of these 8, we select one representative
cluster for visualization.



Data streaming. The index is trained on months
{i, ..., i+m−1} and months {j, ..., j +m−1} are added
to the index, where m is a window size. In the in-domain
(ID) setting, the training is performed on the same data as the
indexed vectors (i=j). In the out-of-domain (OOD) setting,
the training and indexing time ranges are different (i=0,
the first month of the time series and i ̸=j). If not stated
otherwise, we consider m=3 months as it is the maximum
retention period of user data for many sharing platforms.

Over time, the index content is updated using a sliding
window with a time step 1 month: at each month, we remove
the data for the oldest month and insert the data for the next
month. The queries are a random subset of 10,000 vectors
for the month j +m. This setting mimics the real-world
setting when queries come after the index is constructed.
Metrics. Our ground truth is simply the exact k-NN re-
sults from brute force search. As a primary quality measure,
we use k−recall@k, the fraction of ground-truth k-nearest
neighbors found in the top k results retrieved by the search al-
gorithm (k=10) [39]. For IVF-based indexes, the efficiency
measure is the number of distance calculations (DCS) be-
tween the query vector and database entries [6]. At search
time, the DCS is given as a fixed “budget”: for a query vector
q, clusters are visited staring from the nearest centroid to q.
The distances between q and all vectors in the clusters are
computed until the DCS budget is exhausted (only a fraction
of the vectors of the last cluster may be processed). The
advantage of this measure over direct timings is that it is
independent of the hardware. Appendix G reports search
time equivalents for a few settings.
Evaluation. We evaluate the k-recall@k after each content
update step over the entire time range. For each index type
and DCS setting, we focus on the month where the gap
between the ID and OOD settings is the largest.

4.2. Robustness of static indexing methods

In this section, we investigate the robustness of static
indexes of the IVF family. Graph-based indexes [46, 20]
are not in the scope of this study because they don’t scale
as well to billion-scale datasets. The components of an IVF
index are (1) the codec that determines how the vectors are
encoded for in-memory storage (2) the coarse quantizer that
determines how the database vectors are clustered.
Vector codecs decrease the size of the vectors for in-memory
storage. We consider PCA dimensionality reduction to
128 and 256 dimensions and quantization methods PQ and
OPQ [27, 21] to reduce vectors to 16 and 32 bytes. To make
results independent of the IVF structure, we measure the
10-recall@10 with an exhaustive comparison between the
queries and all vectors in D. In Table 1, we observe a small
gap for most settings (<1%). We attribute this to the small
codebook sizes of the codecs. In ML terms, they can hardly
fit the data and, hence, may be less sensitive to the drift.

VideoAds YFCC
Method ID OOD ID OOD

PCA128 0.709 0.698 0.625 0.622
PCA256 0.844 0.835 0.867 0.864

PQ16 0.237 0.237 0.164 0.160
PQ32 0.441 0.441 0.380 0.377

OPQ16 0.457 0.446 0.302 0.294
OPQ32 0.609 0.601 0.484 0.477

Table 1. Relative 10-recall@10 for in-domain (ID) and out-of-
domain (OOD) search, with various vector compression methods.
The recall degradation is considered acceptable.

Budget 6000 DCS 12000 DCS 30000 DCS 60000 DCS
Method ID OOD ID OOD ID OOD ID OOD

IVF16384 0.842 0.732 0.914 0.845 0.966 0.938 0.985 0.973
IVF65536 0.914 0.835 0.956 0.910 0.984 0.967 0.993 0.985

IMI2×8 0.257 0.245 0.391 0.364 0.662 0.592 0.838 0.775
IMI2×10 0.529 0.469 0.732 0.651 0.891 0.841 0.951 0.928

RCQ10 4 0.651 0.531 0.776 0.676 0.899 0.838 0.951 0.916
RCQ12 4 0.809 0.713 0.895 0.826 0.958 0.925 0.981 0.966

Budget 6000 DCS 12000 DCS 30000 DCS 60000 DCS
Method ID OOD ID OOD ID OOD ID OOD

IVF4096 0.796 0.744 0.892 0.858 0.960 0.945 0.983 0.977
IVF16384 0.894 0.851 0.947 0.922 0.981 0.972 0.993 0.989

IMI2×6 0.245 0.217 0.409 0.360 0.727 0.681 0.872 0.869
IMI2×8 0.449 0.419 0.673 0.627 0.870 0.847 0.948 0.938

RCQ8 4 0.575 0.521 0.730 0.682 0.878 0.850 0.940 0.927
RCQ10 4 0.768 0.718 0.872 0.839 0.949 0.933 0.978 0.971

Table 2. Relative performance of index structures for in-domain
(ID) and out-of-domain (OOD) search on VideoAds (top) and
YFCC (bottom). The color shade indicates the performance drop be-
tween ID and OOD: green is <1%, red is >5%, yellow in-between.

The coarse quantizer partitions the search space. We evalu-
ate the following coarse quantizers with K centroids: IVFK
is the plain k-means [27]; IMI2×n a product quantizer
with two sub-vectors [6] each quantized to 2n centroids
(K = 22×n); and RCQn1 n2 is a two-level residual quan-
tizer [13], where the quantizers are of sizes 2n1 and 2n2

centroids (K = 2n1+n2 ).
Table 2 reports the 10-recall@10 for various DCS budgets

representing different operating points. We experiment with
different index settings for VideoAds and YFCC, due to their
size difference. The content drift has a significant impact
in these experiments. We investigate the effect of different
window sizes m in Appendix C.

5. Updating the index to accomodate data drift
In this section, we introduce DEDRIFT to reduce the

impact of data drift on IVF indexes over time. First, we
address the case where vectors are partitioned by the IVF



but stored exactly. Then we show how to handle compressed
vectors.

Our baseline methods are the lower and upper bounds of
the accuracy: None keeps the trained part of the quantizer
untouched over the entire time span; with Full, the index is
reconstructed at each update step.

5.1. DEDRIFT updating strategies

DEDRIFT-Split addresses imbalance by repartitioning a
few clusters. DEDRIFT-Split collects the vectors from the
k ≪ K largest clusters into B1. The objective is to re-assign
these vectors into k2 > k new clusters, where k2 is chosen
so that the average new cluster size is the median cluster
size µ of the whole IVF: k2 = ⌈|L1|/µ⌉. To keep the total
number of clusters K constant, vectors from the k2 − k
smallest clusters are collected into B2. We train k-means
with k2 centroids on B1 ∪ B2, and replace the k2 involved
clusters in the index. Other centroids and clusters are left
untouched, so the update cost is much lower than N .
DEDRIFT-Lazy updates all centroids by recomputing the
centroid of the vectors assigned to each cluster. In contrast to
a full k-means iteration, the vectors are not re-assigned after
the centroid update. Therefore, DEDRIFT-Lazy smoothly
adapts the centroids to the shifting distribution without a
costly re-assignment operation. The similar idea was previ-
ously considered in the context of VLAD descriptors [3].
DEDRIFT-Hybrid combines Split and Lazy by updating the
centroids first, then splitting k largest clusters.
Discussion. In a non-temporal setting, if the query and
database vectors were sampled uniformly from the whole
time range, they would be i.i.d. and the optimal quantizer
would be k-means (if it could reach the global optimum).
The DEDRIFT approaches are heuristic, they do not offer
k-means’ optimality guarantees. However, our setting is
different: (1) the database is incremental, so we want to
avoid doing a costly global k-means and (2) the query vectors
are the most recent ones, so the i.i.d. assumption is incorrect.
Reason (1) means that we have to fall back to heuristics to
“correct” the index on-the-fly and (2) means that DEDRIFT
heuristics may actually outperform a full re-indexing.

5.2. DEDRIFT in the compressed domain

For billion-scale datasets, the vectors stored in the IVF
are compressed with codecs, see Section 4.2. However,
DEDRIFT-Split needs to access all original embeddings (e.g.
from external storage). Besides, DEDRIFT-Lazy needs to
update centroids using the original vectors. Reconstructed
vectors could be used but this significantly degrades the
performance of the DEDRIFT variants (see Appendix H). A
workaround for DEDRIFT-Lazy is to store just a subsampled
set of training vectors. There is no such workaround for the
other methods: they must store the entire database, which is
an operational constraint.

Efficient DEDRIFT-Lazy with PQ compression. We fo-
cus on the product quantizer (PQ), which is the most preva-
lent and difficult to update vector codec. There are two
ways to store a database vector x in an IVF index: compress
directly (Section 4.2 shows that drift does not affect this
much), or store by residual [27], which is more accurate.
When storing x by residual, the vector that gets compressed
is relative to the centroid ci that x is assigned to: r = x− ci
is compressed to an approximation r̂.

The distance between a query q and the compressed vec-
tor r̂ is computed in the compressed domain, without de-
compressing r̂. For the L2 distance, this relies on distance
look-up tables that are built for every (q, ci) pair, i.e. when
starting to process a cluster in the index. The look-up tables
are of size MPQ × KPQ for a PQ of MPQ sub-quantizers
of KPQ entries. In a static index, one query gets compared
to the vectors of L clusters (L a.k.a. nprobe), so look-up
tables are computed L times. The runtime cost of computing
look-up tables is L× d×KPQ FLOPs.

In DEDRIFT-Lazy, there are m successive “versions” of
ci. Computing the look-up tables with only the latest version
of ci incurs an unacceptable accuracy impact, so we need to
compute look-up tables for each time step. For this, we (1)
store the history of ci’s values and (2) partition the vectors
within each cluster into m subsets, based on the version ci
that they were encoded with.

The additional index storage required for the historical
centroids is in the order of K×(m−1)×d floats. For exam-
ple, for N=107, K= 216, d=384, m=3 and PQ32 encoding,
the historical centroids stored in float16 will consume ∼16%
of the PQ codes. This may be considered significant, espe-
cially for large m settings. In the future work, we anticipate
addressing this limitation of our approach.

The additional computations required for the look-up
tables is L× d×KPQ × (m− 1) FLOPs. For large-scale
static indexes, the time to build the look-up tables is small
compared to the compressed-domain distance computations.
This remains true for small values of m.

Note that the coarse quantization is still performed on
K centroids and the residuals w.r.t. historical centroids are
computed only for the L nearest centroids.

6. Experimental results
Here, we evaluate DEDRIFT empirically. All experiments

are performed with the FAISS library [30], with the protocol
in Section 4.1: ANNS under a fixed budget of distance
computations (DCS). Unless specified, we report the results
at one time step j chosen to maximize the average recall gap
between the None and Full settings over the DCS budgets.

6.1. Uncompressed embeddings

First, we consider DEDRIFT on IVF methods with uncom-
pressed embeddings. We consider the quantizer is updated
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Figure 6. DEDRIFT performance tradeoff: 10-recall@10 as a func-
tion of the index update runtime. The upper bounds are full index
reconstruction (Full). The lower bound is no reindexing (None).
Each point in a sequence represents an update frequency: 6, 3,
2, 1 months (left to right). DEDRIFT variants demonstrate strong
robustness to content drift on both datasets, while being two orders
of magnitude faster than Full.

every 1, 2, 3 or 6 months to see how long it can be frozen
without perceptible loss in performance.

Along with the recall, we measure the average index
update time. The IVF contain K = 16384 centroids for
VideoAds and K = 4096 for YFCC (accounting to the
different numbers of vectors within m=3 months).

Figure 6 shows that DEDRIFT-Split improves the search
performance especially for low DCS budgets, while it is
160× (resp. 250×) more efficient than the index reconstruc-
tion (Full) on YFCC (resp. VideoAds). DEDRIFT-Lazy
significantly outperforms DEDRIFT-Split on both datasets

Budget (DCS) 6000 12000 20000 30000 60000

None 0.726 0.865 0.917 0.950 0.976
Split 0.796 0.884 0.927 0.951 0.977
Lazy 0.720 0.796 0.832 0.868 0.946

Hybrid 0.824 0.900 0.937 0.959 0.980
Full 0.824 0.904 0.942 0.963 0.984

Table 3. DEDRIFT robustness to outlier content on the YFCC
dataset for IVF4096 without compression. DEDRIFT-Lazy notice-
ably degrades when confronted with a large portion of abnormal im-
ages while DEDRIFT-Split and DEDRIFT-Hybrid can successfully
avoid the drop in performance. Numbers for j=September 2012.

and all DCS budgets, and is still 70× (YFCC) and 170×
(VideoAds) faster than Full. DEDRIFT-Hybrid further im-
proves the DEDRIFT-Lazy performance for low DCS.

Overall, DEDRIFT almost reaches Full on YFCC and
significantly reduces the gap between Full and None on
VideoAds. e.g., on YFCC, the proposed method provides
5.4%, and 1.3% gains for 6000, and 30000 DCS budgets,
respectively. DEDRIFT is about two orders of magnitude
cheaper than the full index reconstruction.

In Appendix I, we evaluate Full with evolving k-means [9]
which adapts the k-means algorithm to the drift. This pro-
vides slightly higher recall on both datasets. However, the
update costs are similar to the full index reconstruction.

Hyperparameters. We vary crucial parameters for the
DEDRIFT variants. For DEDRIFT-Split, we consider k=8
and k=64 clusters for the YFCC and VideoAds datasets,
respectively. Higher k values usually lead to slightly better
recall rates at the cost of noticeably higher index update
costs. DEDRIFT-Lazy performs a single centroid update at a
time. Appendix D shows that more training iterations tend
to degrade the performance. We hypothesize that further
training moves the centroids too far away from the vectors
already stored to represent them accurately.

6.2. Robustness to outlier content

We investigate the index robustness to outlier content that
occasionally occurs in real-world settings. When starting
experiments on the YFCC dataset, we observed bursts of im-
ages of uniform color. It turns out these are placeholders for
removed images. For the previous experiments, we removed
these in the cleanup phase.

To assess DEDRIFT’s robustness, we add these images
back to the YFCC dataset and repeat the experiments from
Section 6.1. Table 3 shows results for September 2012
(month with the largest None-Full gap): DEDRIFT-Lazy
significantly degrades compared to all methods, including
no reindexing (None). In contrast, DEDRIFT-Split and
DEDRIFT-Hybrid prevent the performance drop, Hybrid
is comparable to the full index update (Full). This shows
DEDRIFT-Split makes indexes robust to abnormal traffic.
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Figure 7. DEDRIFT performance against None and Full over the entire time period for VideoAds (Top) and YFCC (Bottom). For both
datasets, we consider 20000 DCS budgets. The x-axis indicates the first month of each time window (j).

IVF16384,OPQ32, direct encoding

Budget (DCS) 6000 12000 20000 30000 60000

None 0.501 0.547 0.566 0.577 0.586
Split 0.520 0.556 0.571 0.579 0.587
Lazy 0.530 0.563 0.577 0.583 0.588

Hybrid 0.535 0.564 0.576 0.582 0.589
Full 0.548 0.573 0.583 0.588 0.593

IVF16384,OPQ32, residual encoding

Budget (DCS) 6000 12000 20000 30000 60000

None 0.522 0.569 0.589 0.599 0.608
Split 0.544 0.582 0.597 0.605 0.613
Lazy 0.559 0.593 0.607 0.613 0.619

Hybrid 0.561 0.591 0.604 0.610 0.616
Full 0.587 0.615 0.625 0.631 0.635

Table 4. Comparison of the index update methods on the VideoAds
dataset for June 2022.

6.3. PQ compressed embeddings

We evaluate indexes with PQ compression. We consider
OPQ [21] with 32 bytes per vector. We evaluate two settings:
quantize either original embeddings (direct encoding) or
their residuals w.r.t. the nearest centroid in the coarse quan-
tizer (residual encoding). Results for the VideoAds dataset
are in Table 4 (see Appendix F for YFCC).

The “residual encoding” is more sensitive to the con-
tent drift. Notably, DEDRIFT-Lazy demonstrates signifi-
cant improvements over no reindexing: +3.7% and +1.4%
absolute for 6000 and 30000 DCS budgets, respectively.
DEDRIFT-Split also outperforms None but the gains are less
pronounced compared to DEDRIFT-Lazy. DEDRIFT-Hybrid
does not boost DEDRIFT-Lazy further in most cases.

Discussion. DEDRIFT significantly reduces the gap
between full index reconstruction and doing nothing.
DEDRIFT-Lazy is a key component that brings the most
value. We consider it as the primary technique. DEDRIFT-
Hybrid demonstrates that DEDRIFT-Split can be comple-
mentary to DEDRIFT-Lazy and boost the index performance
for low DCS budgets even further. Moreover, the Split vari-
ant offers a level of robustness against sudden changes in the
dataset distribution.

7. Conclusion

In this paper, we address the robustness of nearest neigh-
bor search to temporal distribution drift. We introduce bench-
marks on a few realistic and large-scale datasets, simulate
the real-world settings and explore how indexing solutions
degrade under drift. We design DEDRIFT, a family of adapta-
tions to the similarity search indexes that mitigate the content
drift problem and show their effectiveness.
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Maximov, Laura Leal-Taixé, Ismail Elezi, et al. The 2021
image similarity dataset and challenge. arXiv preprint
arXiv:2106.09672, 2021. 1

[18] Abhimanyu Dubey, Laurens van der Maaten, Zeki Yalniz,
Yixuan Li, and Dhruv Mahajan. Defense against adversarial
images using web-scale nearest-neighbor search. In IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR, pages 8767–8776, 2019. 1

[19] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari
Finkel. An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical Software
(TOMS), 3(3):209–226, 1977. 2

[20] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast
approximate nearest neighbor search with the navigating
spreading-out graph. arXiv preprint arXiv:1707.00143, 2017.
5

[21] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized
product quantization for approximate nearest neighbor search.
In CVPR, 2013. 5, 8

[22] Robert M. Gray and David L. Neuhoff. Quantization. IEEE
transactions on information theory, 44(6):2325–2383, 1998.
1

[23] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In Proc. CVPR, pages 9729–9738, 2020.
3

[24] Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini,
Fabio Petroni, Timo Schick, Jane Dwivedi-Yu, Armand Joulin,
Sebastian Riedel, and Edouard Grave. Few-shot learning
with retrieval augmented language models. arXiv preprint
arXiv:2208.03299, 2022. 1

[25] Shikhar Jaiswal, Ravishankar Krishnaswamy, Ankit Garg,
Harsha Vardhan Simhadri, and Sheshansh Agrawal. Ood-
diskann: Efficient and scalable graph anns for out-of-
distribution queries. arXiv preprint arXiv:2211.12850, 2022.
3
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Appendix

A. Additional similarity matrices

In Figure 10, we provide daily similarity matrices over
one month. We observe that the content for weekends and
weekdays might differ for both datasets. Note that the num-
ber of points per day is equalized to avoid artifacts due to
the number of vectors per day.

Figure 9 presents weekly similarity matrices over one
year. We observe the similar content drift behavior to Fig-
ure 4, but no discernable weekly correlations.

B. Balance of K-means clusters

The IVF-based indexing relies on a vector quantizer to
partition the vectors into clusters. Therefore, we investigate
how content drift affects K-means clusters. We select months
i and j and train K-means (K=16384) on Φi. Then, we
assign the vectors from Φj to the trained centroids, count
the number of points within each cluster and normalize them
by |Φj | = M . This yields a discrete distribution pi,j =
(p1, . . . , pK) We use the entropy of H(pi,j) to measure the
balancedness of the K-means clusters. For balanced clusters
the entropy is log2 K = 14 and for a hopelessly unbalanced
clustering where all vectors are assigned to one cluster it
is 0. Figure 8 shows the matrix of entropies for all pairs
(i, j). The further away from the diagonal, the lower the
entropy. This means that the K-means clustering becomes
progressively less balanced when month i is more distant
from month j. In addition, for YFCC, the clusters are more
imbalanced for opposite seasons.

This means that the direct distance measurements in fig-
ure 4 translate to sub-optimal clustering as well. For all
datasets, the content drift takes place and has different na-
ture and behavior. The changing distribution also affects
K-means clusters and hence might lead to the noticeable
degradation of the most prevalent indexing schemes at scale.

C. Robustness of indexing structures for differ-
ent window sizes

In our experiments, we consider the window size m=3
months which is motivated by the reasonable practical sce-
nario. However, one can consider different m settings.

In Table 5, we provide the robustness results for IVF
indexes built upon uncompressed embeddings for various
window sizes m in months. We select the coarse quantizer
sizes according to the number of datapoints within the index.
We observe that the performance degradation does not differ
much, even for large m.

VideoAds YFCC
Oct 2020 → Sep 2022 Jan 2007 → Dec 2013

Figure 8. Balancedness of K-means clusters over time. The start-
ing and ending date for the periods are indicated on top. For both
datasets, the clusters become more imbalanced. YFCC also demon-
strates the seasonal behavior — the clusters are more balanced for
the same seasons than for the opposite ones. Note that we use stride
3 months for the YFCC dataset for better visualization.

VideoAds YFCC
Jan 2021 → Dec 2021 Jan 2011 → Dec 2011

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48
51

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48
51

Figure 9. Pairwise similarity matrices between the embeddings
over one year subdivided in one week. Blue and yellow correspond
to low and high similarities, respectively. There is still the seasonal
pattern for YFCC and content drift over time for VideoAds. Both
datasets do not have any clearly visible weekly correlations.

D. DEDRIFT-Lazy with multiple training itera-
tions

DEDRIFT-Lazy can be considered as a warm-started k-
means to adapt to the new data distribution. Therefore, we
investigate the impact of the number of centroid update steps
L. For a normal k-means clustering the number of iterations
strikes a tradeoff between speed and the quality of the clus-
tering. However, Table 6 demonstrates that a single centroid
update provides the highest recall. Moreover, the number
of training iterations L>2 leads to noticeable degradation.
This is because DEDRIFT-Lazy do not reassign the points
after the centroid update and hence more iterations imply
that the centroids move far away from the ones that the “old”
vectors were assigned to. Therefore, it is both more efficient
and more accurate to do a single centroid update step.
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Figure 10. Pairwise similarity matrices between the embeddings over one month subdivided in days for a few months selected at random.
Blue and yellow correspond to low and high similarities, respectively. Red dates represent weekends. Both datasets have noticeable weekday
vs weekend pattern.

Budget 6000 DCS 12000 DCS 30000 DCS 60000 DCS
Method m ID OOD ID OOD ID OOD ID OOD

IVF8192 1 0.873 0.767 0.934 0.867 0.977 0.949 0.990 0.979
IVF16384 3 0.842 0.732 0.914 0.845 0.966 0.938 0.985 0.973
IVF32768 6 0.839 0.738 0.896 0.832 0.956 0.930 0.979 0.967
IVF65536 12 0.821 0.743 0.896 0.850 0.955 0.937 0.978 0.969

Budget 6000 DCS 12000 DCS 30000 DCS 60000 DCS
Method m ID OOD ID OOD ID OOD ID OOD

IVF2048 1 0.876 0.826 0.938 0.912 0.980 0.970 0.992 0.989
IVF4096 3 0.796 0.744 0.892 0.858 0.960 0.945 0.983 0.977
IVF8192 6 0.768 0.713 0.872 0.839 0.943 0.928 0.974 0.967

IVF16384 12 0.758 0.703 0.859 0.823 0.939 0.924 0.973 0.964

Table 5. Relative performance of IVF indexing structures for in-
domain (ID) and out-of-domain (OOD) search on VideoAds (top)
and YFCC (bottom) for different window sizes m in months. The
search accuracy measure is 10-recall@10. The drops in perfor-
mance are essentially similar for various m settings.

E. Index update costs for IVF with PQ com-
pressed embeddings on YFCC

Table 7 provides the update costs for the IVF index with
OPQ encoding. On both datasets, DEDRIFT demonstrates
efficiency gains from 3× to 10×.

Note that the gains are smaller than for IVF operating on
uncompressed embeddings. This is because, in this experi-
ment, the index on the PQ compressed vectors uses original

data on the disk and loads it into RAM at each update step.
This is an implementation choice, that in addition makes the
timings dependent on the performance of the external stor-
age. Specifically, in our case, the data loading takes ∼1.7s
and ∼8s for YFCC and VideoAds, respectively.

F. DEDRIFT on IVF with PQ compressed em-
beddings on YFCC

Table 8 presents the results of the IVF index with OPQ en-
coding on the YFCC dataset. The performance drop caused
by the content drift is smaller compared to VideoAds. Nev-
ertheless, DEDRIFT almost closes the gap between no rein-
dexing (None) and full index reconstruction (Full).

G. Runtimes for different budgets
In this section, we report measured search times in mil-

liseconds for different DCS budgets on each dataset. We
average the runtimes over 20 independent runs. All runs are
performed with 30 threads on an Intel Xeon Gold 6230R
CPU @ 2.10GHz.

H. Running DEDRIFT on reconstructed vectors
In Table 9, we present the index update method perfor-

mance if the cetroids are updated based on either original



YFCC, IVF4096,Flat, Jun 2013

Budget (DCS) 6000 12000 20000 30000 60000

L=0 0.746 0.858 0.913 0.943 0.975
L=1 0.795 0.889 0.930 0.954 0.979
L=2 0.795 0.888 0.931 0.954 0.979
L=3 0.791 0.884 0.928 0.952 0.978
L=5 0.785 0.879 0.924 0.949 0.976
L=10 0.777 0.871 0.919 0.945 0.973

VideoAds, IVF16384,Flat, Jun 2022

Budget (DCS) 6000 12000 20000 30000 60000

L=0 0.719 0.832 0.891 0.923 0.961
L=1 0.780 0.875 0.920 0.946 0.971
L=2 0.780 0.869 0.913 0.939 0.966
L=3 0.773 0.863 0.909 0.934 0.962
L=5 0.769 0.860 0.904 0.930 0.958
L=10 0.753 0.844 0.893 0.920 0.951

Table 6. DEDRIFT-Lazy performance for the different number
of centroid update iterations L. L=1 provides the highest recall
values. Note that L=1 is also the most efficient option.

YFCC, IVF4096,OPQ32

Method Split Lazy Hybrid Full
Update costs (s) 2.1 8.1 10.4 29.8

VideoAds, IVF16384,OPQ32

Method Split Lazy Hybrid Full
Update costs (s) 10.8 24.1 33.2 430.8

Table 7. Index update costs for IVF indexes with OPQ encoding.
DEDRIFT variants are much more efficient than full index recon-
struction (Full).

IVF4096,OPQ32, direct encoding

Budget (DCS) 6000 12000 20000 30000 60000

None 0.414 0.444 0.455 0.461 0.465
Split 0.423 0.448 0.457 0.461 0.465
Lazy 0.432 0.452 0.459 0.463 0.466

Hybrid 0.432 0.453 0.460 0.464 0.466
Full 0.435 0.454 0.460 0.464 0.467

IVF4096,OPQ32, residual encoding

Budget (DCS) 6000 12000 20000 30000 60000

None 0.453 0.481 0.492 0.497 0.501
Split 0.463 0.487 0.495 0.500 0.503
Lazy 0.474 0.495 0.504 0.507 0.510

Hybrid 0.478 0.496 0.504 0.507 0.510
Full 0.480 0.500 0.508 0.511 0.514

Table 8. Comparison of the index update methods on the YFCC
dataset for IVF4096,OPQ32.

embeddings or reconstructed ones from the PQ encodings.
DEDRIFT does not degrade the recall values much while the
full index reconstruction is noticeably affected.

YFCC, IVF4096,OPQ32, direct encoding

Budget 6000 DCS 12000 DCS 30000 DCS 60000 DCS
Method Orig Recon Orig Recon Orig Recon Orig Recon

Split 0.423 0.423 0.448 0.447 0.461 0.461 0.465 0.466
Lazy 0.432 0.430 0.452 0.452 0.463 0.463 0.466 0.466
Full 0.435 0.425 0.454 0.448 0.464 0.462 0.467 0.465

VideoAds, IVF16384,OPQ32, direct encoding

Budget 6000 DCS 12000 DCS 30000 DCS 60000 DCS
Method Orig Recon Orig Recon Orig Recon Orig Recon

Split 0.520 0.514 0.556 0.552 0.579 0.578 0.587 0.586
Lazy 0.530 0.528 0.563 0.562 0.583 0.582 0.588 0.588
Full 0.548 0.527 0.573 0.559 0.588 0.580 0.593 0.587

Table 9. DEDRIFT and full index reconstruction performance (Full)
when the centroids are updated using original embeddings (Orig)
and reconstructed ones from PQ encodings (Recon).

Budget (DCS) 6000 12000 20000 30000 60000

IVF16384, Flat 6.12 12.05 18.93 27.14 53.35
IVF16384, OPQ32 1.08 1.23 1.29 1.40 1.96

Table 10. Runtimes (ms per query) for different budgets on
VideoAds.

Budget (DCS) 6000 12000 20000 30000 60000

IVF4096, Flat 4.26 7.72 12.61 18.19 35.44
IVF4096, OPQ32 0.43 0.54 0.72 0.93 1.73

Table 11. Runtimes (ms per query) for different budgets on YFCC.

I. Evolving k-means evaluation
In this experiment, we evaluate evolving k-means [9]

during the full index reconstruction. We consider different
evolving k-means configurations proposed in the paper and
provide the results in Table 12. Evolving k-means slightly
improves the results on both datasets.

J. Image credits
J.1. Attributions for Figure 2

From top to bottom and left to right, the images are from
Yahoo Flickr users:
2007-07: Imagine24, fsxz, Tuldas, CAPow!, Anduze trav-
eller, Barnkat.
2008-10: BEYOND BAROQUE, armadillo444, Anadem
Chung, nikoretro, Jon Delorey, Gone-Walkabout.
2009-12: Spider58, thehoneybunny, Communicore82, Oli
Dunkley, HarshLight, Yelp.com.
2010-02: cruz fr, Bemep, Dawn - Pink Chick, ljw7189,
john.meagher, ShashiBellamkonda.



Budget (DCS) 6000 12000 20000 30000 60000

Full naive 0.804 0.895 0.938 0.959 0.981
Full [9] PSKV 0.798 0.892 0.935 0.958 0.982

Full [9] FSKV p=0.5 0.804 0.895 0.938 0.960 0.983
Full [9] FSKV p=0.8 0.807 0.896 0.939 0.961 0.983

Budget (DCS) 6000 12000 20000 30000 60000

Full naive 0.815 0.892 0.930 0.952 0.975
Full [9] PSKV 0.815 0.894 0.934 0.956 0.980

Full [9] FSKV p=0.5 0.818 0.896 0.935 0.956 0.980
Full [9] FSKV p=0.8 0.820 0.897 0.935 0.957 0.981

Table 12. Comparison with the evolving k-means method [9] on the
YFCC (Top) and VideoAds (Bottom) datasets. Evolving k-means
slightly improves the recall rates for the full index reconstruction.

2011-06: robinmyerscough, telomi, richmiller.photography,
hergan family, cus73, librarywebchic.


