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ABSTRACT

Despite the great empirical success of actor-critic methods, its finite-time convergence is still poorly
understood in its most practical form. In particular, the analysis of single-timescale actor-critic
presents significant challenges due to the highly inaccurate critic estimation and the complex er-
ror propagation dynamics over iterations. Existing works on analyzing single-timescale actor-critic
only focus on the i.i.d. sampling or tabular setting for simplicity, which is rarely the case in prac-
tical applications. We consider the more practical online single-timescale actor-critic algorithm on
continuous state space, where the critic is updated with a single Markovian sample per actor step.
We prove that the online single-timescale actor-critic method is guaranteed to find an ǫ-approximate

stationary point with Õ(ǫ−2) sample complexity under standard assumptions, which can be further
improved to O(ǫ−2) under i.i.d. sampling. Our analysis develops a novel framework that evaluates
and controls the error propagation between actor and critic in a systematic way. To our knowledge,
this is the first finite-time analysis for online single-timescale actor-critic method. Overall, our re-
sults compare favorably to the existing literature on analyzing actor-critic in terms of considering
the most practical settings and requiring weaker assumptions.

1 Introduction

Actor-critic (AC) methods have achieved huge success in solving many challenging reinforcement learning (RL) prob-
lems [1, 2, 3]. In AC methods, the actor (i.e., the policy) is updated by the estimated policy gradient (PG) which is a
function of the Q-value (action-value function) corresponding to this policy. AC methods employ a parallel critic up-
date to bootstrap the Q-value for policy gradient estimation, which often enjoys reduced variance and fast convergence
in practical implementations.

Despite the empirical success, the convergence analysis of AC in the most practical single-timescale form remains
largely unknown. A large body of existing works consider the double-loop setting. In double-loop AC, the inner loop
critic update takes sufficient steps to accurately estimate the Q-value for a given actor from the outer loop [4, 5, 6, 7].
As a result, the analysis of critic can be easily decoupled from that of the actor, with a policy evaluation sub-problem
in the inner loop and a perturbed gradient descent in the outer loop. Its finite-time convergence is easy to analyse
and well understood in general [5, 4, 8]. Nevertheless, double-loop setting is mainly for the ease of analysis, which
is rarely used in practice. In fact, since it requires an accurate critic estimation, it is in general sample inefficient
compared to the single-loop variant [9]. Moreover, it’s unclear whether an inner loop of accurate policy evaluation is
really necessary given that it only corresponds to a transient policy during update.

Another body of works consider the (single-loop) two time-scale algorithm [10, 9, 11], where the actor and the critic are
updated simultaneously in each iteration using stepsizes of different timescales. The actor stepsize is typically smaller
than that of the critic, with their ratio goes to zero as the iteration number goes to infinity. The two-timescale allows
the critic to approximate the correct Q-value in an asymptotic way. This design essentially allows for a decoupled
convergence analysis of the actor and the critic. Again, this variant is not very often used in practice and can be sample
inefficient as the actor update is artificially slowed down.

In this paper, we consider the most practical single-timescale AC algorithm, which is the one introduced in many
literature as well as in [12] as a classic AC algorithm. In single-timescale AC, the stepsizes for the critic and the
actor diminishes at the same timescale. Unlike the aforementioned variants, there is no specialized design that helps
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simplify the convergence analysis in single-timescale AC. Rather, the error presents in the critic estimation can be
substantial, and the close coupling between the parallel critic update and actor update can lead to unstable error
propagation. Indeed, it remains unclear under what condition the errors will converge to zero. To study its finite-time
convergence, we consider the challenging undiscounted time-average reward formulation [12], which consists of three
parallel updates: the (time-average) reward estimator, the critic estimator, and the actor estimator. We keep track of
the reward estimation error, the critic error, and the policy gradient norm (which measures the actor error) by deriving
an implicit bound for each of them. They are then analyzed altogether as an interconnected system inspired by [13] to
establish the convergence simultaneously. Particularly, we identify a threshold of the (constant) ratio between the actor
stepsize and the critic stepsize, below which all three errors will diminish to zero, despite the inaccurate estimation in
all three updates (reward estimation, critic, actor). Our analysis applies to both i.i.d sampling and online Markovian
sampling. To our knowledge, our work presents the first finite-time analysis for online single-timescale AC algorithm,
which improves the results of existing works on single-timescale AC [14, 13] by considering Markovian sampling and
requiring less assumptions (see details in 1.1).

1.1 Main Contributions

We summarise our main contributions as follows:

• We provide the first finite-time analysis for the single-timescale AC under Markovian sampling with Õ(ǫ−2) sample
complexity. We further show that this sample complexity can be improved to O(ǫ−2) under i.i.d. sampling, which
matches the state-of-the-art performance of SGD on general non-convex optimization problem. We remark that the

additional logarithmic term hide by Õ(·) under Markovian sampling is caused by the mixing time of the Markov chain.

• Our result outperforms all existing works on single-timescale AC. To our knowledge, the only other results of single-
timescale AC in general case are from [14] and [13], both of which obtain a sample complexity of O(ǫ−2). However,
[14] considered the i.i.d. sampling and their analysis highly relies on the smoothness of stationary distribution which
cannot be justified easily. The authors left the removal of this assumption and the extension to Markovian sampling
for future research. Both challenges left in [14] are well resolved in our work.

Besides, [13] also assumed i.i.d. sampling and only considered the tabular case, whereas we allow the state space
S to be infinite. It is believed in [13] that the i.i.d. sampling is important to guarantee the convergence of single-
timescale AC with TD(0) update. However, we show that single-timescale AC with TD(0) update does converge under
Markovian sampling.

Moreover, compared to the state-of-the-art two-timescale AC in [10], we generalize their results to the more challeng-
ing single-timescale case under exactly the same settings and assumptions, purely through the improvement of our

analysis. Beyond that, we are able to improve their sample complexity from Õ(ǫ−2.5) to Õ(ǫ−2).

• Technically, we develop a novel analysis framework that can establish the finite-time convergence for single-
timescale AC under standard assumptions. The existing analysis for double-loop AC [4] and two-timescale AC [10]
hinge on decoupling the analysis of actor and critic, which typically establishes the convergence of critic first and then
actor [4, 10, 14]. We instead investigate the evolution of the coupled estimation errors of the time-average reward, the
critic, and the policy gradient norm altogether as an interconnected system. In particular, we identify a threshold of the
ratio between the actor stepsize and the critic stepsize, below which all estimation errors diminishes. This threshold
can serve as a guidance for choosing the stepsize in practice to ensure a stable learning. Moreover, our new proof
framework can provide insights for finite-time analysis of other single-timescale stochastic approximation algorithms
as well.

1.2 Related Work

Actor-Critic methods. The first AC algorithm was proposed by [15]. [16] extended it to the natural AC algorithm. The
asymptotic convergence of AC algorithms has been well established in [16, 17, 18, 19] under various settings. Many
recent works focused on the finite-time convergence of AC methods. Under the double-loop setting, [4] established the
global convergence of AC methods for solving linear quadratic regulator (LQR). [6] studied the global convergence
of AC methods with both the actor and the critic being parameterized by neural networks. [5] studied the finite-time
local convergence of a few AC variants with linear function approximation.

Under the two-timescale AC setting, [10] established the finite-time local convergence to a stationary point at a sample

complexity of Õ(ǫ−2.5) with finite action space. [11] studied both local convergence and global convergence for two-

timescale (natural) AC, with Õ(ǫ−2.5) and Õ(ǫ−4) sample complexity, respectively, under the discounted accumulated
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reward. The algorithm collects multiple samples to update the critic. [9] established the global convergence of two-
timescale AC methods for solving LQR, where they use a single sample to update the critic.

Under the single-timescale setting, [20] considered the least-squares temporal difference (LSTD) update for critic and
obtained the optimal policy within the energy-based policy class for both linear function approximation and nonlinear
function approximation using neural networks. In addition to the special implementation, [14] and [13] considered the
single-timescale AC in general case, which have been clearly reviewed and compared in 1.1.

Policy gradient methods. The asymptotic convergence of policy gradient methods have been well established in
[21, 22, 23, 16] via stochastic approximation methods [24]. Some recent works have shown that PG methods can
find the global optimum of some particular class of problems, such as LQR [25, 26], the performance function of
which satisfies the gradient dominance property [27], and tabular case RL problem [28]. Under general function
approximation setting, finite-time convergence of PG methods have been provided in [28, 29, 30, 31]. Specifically,
[28] established the finite-time convergence of PG methods under both tabular policy parameterizations and general
parametric policy classes. [29] obtained an ǫ-accurate stationary point for PG methods with a sample complexity of
O(ǫ−2), where they adopted Monte-Carlo sampling to find an unbiased estimation of policy gradient. Later, [30, 31]
studied the variance reduction PG and acceleration PG.

Notation. Without other specification, for two sequences {xn} and {yn}, we write xn = O(yn) if there exists an

constant C such that xn ≤ Cyn. We use Õ(·) to further hide logarithm factors. We use dTV (µ, v) to denote the total
variation distance of two probability measure µ and v, which is defined as dTV (µ, v) :=

1
2

∫
X |µ(dx) − v(dx)|.

2 Preliminaries

In this section, we provide the background for single-timescale AC method.

2.1 Markov decision process

We consider the reinforcement learning for the standard Markov Decision Process (MDP) defined by (S,A,P , r),
where S is the state space and A is the action space. In this paper, we consider the finite action space |A| < ∞,
while the state space can be either a finite set or an (unbounded) real vector space S ∈ R

n. P(st+1|st, at) denotes the
transition kernel that the agent transits to state st+1 after taking action at at current state st. Function r : S × A →
[−Ur, Ur] generates the reward of the agent taking action a at state s. A policy πθ(a|s) parameterized by θ is defined
as a mapping from a given state to a probability distribution over actions.

The RL problem of consideration aims to find a policy πθ that maximizes the infinite-horizon time-average reward
[22, 12, 4, 10], which is given by

J(θ) := lim
T→∞

Eθ

∑T−1
t=0 r(st, at)

T
= E

s∼µθ ,a∼πθ

[r(s, a)], (1)

where µθ denotes the stationary state distribution induced by policy πθ , and the expectation Eθ is over the Markov
chain under πθ . Hereafter, we refer to J(θ) as the time-average reward (or exchangeably, performance function), which
can be evaluated by the expected reward over the stationary distribution µθ and the policy πθ (the second equality
in (1)). The existence of the stationary distribution can be guaranteed by the uniform ergodicity of the underlying
MDP, which is a common assumption.

The state-value function is used to evaluate the overall rewards starting from state s and following policy πθ thereafter,
which can be defined as

Vθ(s) := Eθ[

∞∑

t=0

(r(st, at)− J(θ))|s0 = s],

where the action follows the policy at ∼ πθ(·|st) and the next state comes from the transition kernel st+1 ∼ P(·|st, at).
Similarly, we define the action-value (Q-value) function to evaluate the overall rewards starting from s, taking action
a, and following policy πθ thereafter:

Qθ(s, a) = Eθ[

∞∑

t=0

(r(st, at)− J(θ))|s0 = s, a0 = a]

= r(s, a)− J(θ) + E[Vθ(s
′)],

(2)

where the expectation is taken over s′ ∼ P(·|s, a).
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2.2 Policy gradient theorem

A significant breakthrough in policy gradient methods is the policy gradient theorem [22], which provides an analytic
expression for the gradient of performance function J(θ) with respect to policy parameter θ. Based on the above
definitions, the policy gradient theorem takes the following form:

∇θJ(θ) = Es∼µθ ,a∼πθ
[Qθ(x, u)∇θ log πθ(u|x)]. (3)

Optimizing J(θ) with the gradient in (3) requires evaluating the Q-value of the current policy πθ , which is usually
unknown. A natural idea is to use all the rewards collected along the sample trajectory (that is, the return) as an
approximation to the true Q-value. This Monte Carlo-based episodic algorithm is known as the REINFORCE [21].

Note that for any function b : S → R independent of action a, we have
∑

a∈A
b(s)∇πθ(a|s) = b(s)∇(

∑

a∈A
πθ(a|s)) = b(s)∇1 = 0.

Therefore, the policy gradient theorem can be naturally generalized to add a comparison term b(s):

∇J(θ) = Es∼µθ ,a∼πθ
[(Qθ(s, a)− b(s))∇θ log πθ(s|a)],

where b(s) is called the baseline function. A popular choice of baseline is the state-value function, which leads to the
following advantage-based policy gradient

∇θJ(θ) = Es∼µθ ,a∼πθ
[Aθ(s, a)∇θ log πθ(a|s)],

where Aθ = Qθ(s, a)− Vθ(s) is the advantage function.

This gives rise to the algorithm named “REINFORCE with baseline” [21]. In general, by introducing a baseline,
the expected value of the actor update remains the same but the variance of the update can be reduced. However,
like all Monte Carlo-based methods, it can still suffers from high variance and thus learns slowly. In addition, it is
inconvenient to implement the algorithm online for continuing tasks [12].

Alternatively, AC methods add a parallel critic update to bootstrap the Q-value. We describe the classic single-
timescale AC in the next subsection.

2.3 The single-timescale actor-critic algorithm

We consider the practical single-sample single-timescale AC method, where the critic is bootstrap estimated using a
single sample reward at each step, directly accommodating online learning for continuing tasks. We use the state-value
function as a baseline, which is approximated by the following linear function:

V̂θ(s;ω) = φ(s)⊤ω.

To drive V̂θ(s;w) towards its true value V (s), the semi-gradient TD(0) update is applied to estimate the linear coeffi-
cient ω (hereafter referred to as the critic):

ωt+1 = ωt + βt[(rt − J(θ) + φ(st+1)
⊤ωt − φ(st)

⊤ωt)]φ(st)

= ωt + βt[(rt − J(θ))φ(st) + φ(st)(φ(st+1)− φ(st))
⊤)ωt],

(4)

where βt is the step size of the critic ω and rt := r(st, at). Since the time-average reward J(θ) is unknown, an
estimator η is introduced to estimate it. Hereafter, we refer to η as the time-average reward estimator, which is
abbreviated to reward estimator. Therefore, the update rule can be written as

ωt+1 = ωt + βt[(rt − ηt)φ(st) + φ(st)(φ(st+1)− φ(st))
⊤)ωt],

ηt+1 = ηt + γt(rt − ηt),

where γt is the step size of the reward estimator ηt.

Similar to REINFORCE with baseline, we define δt := rt − ηt + φ(st+1)
⊤ωt − φ(st)

⊤ωt as an approximation to the
advantage function and derive the corresponding update rule for actor:

θt+1 = θt + αtδt∇θ log πθt(at|st),
where clearly αt is the actor stepsize. The above updates give rise to Algorithm 1, which is clearly introduced in
[12] as a classic online one-step AC algorithm. Algorithm 1 can be efficiently implemented under both episodic and
continuing setting due to its online nature.
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Algorithm 1 Single-timescale Actor-Critic

1: Input initial actor parameter θ0, initial critic parameter ω0, initial reward estimator η0, stepsize αt for actor, βt

for critic and γt for reward estimator.
2: Draw s0 from some initial distribution
3: for t = 0, 1, 2, · · · , T − 1 do
4: Take the action at ∼ πθt(·|st)
5: Observe next state st+1 ∼ P(·|st, at) and the reward rt = r(st, at)
6: δt = rt − ηt + φ(st+1)

⊤ωt − φ(st)
⊤ωt

7: ηt+1 = ηt + γt(rt − ηt)
8: ωt+1 = ΠUω

(ωt + βtδtφ(st))
9: θt+1 = θt + αtδt∇θ log πθt(at|st)

10: end for

Note that the “single-timescale” refers to the fact that the stepsizes for the critic and the actor updates are constantly
proportional. In addition, this is a “single-sample” algorithm, since only one sample is needed for update in each
iteration. These considered settings are more practical than those performing multiple sampling and adopting least
square temporal difference (LSTD) update for critic [20]. In Line 8 of Algorithm 1, a projection (ΠUω

) is introduced
to keep the critic norm-bounded by Uω, which is common in the literature [10, 4, 11, 14]. In our analysis, the projection
is relaxed using its non-expansive property.

Note that [10] provided the finite-time analysis for Algorithm 1 under the two-timescale setting, where the ratio
between the actor and critic stepsizes are diminishing. In this work, we take a step further to show that Algorithm 1 can
converge even under the more practical yet challenging single-timescale setting, under the same conditions assumed
in [10]. Beyond that, we also improve the sample complexity by orders.

3 Main Theory

3.1 Assumptions

To further simplify the expression, we denote by s′ the subsequent state-action pair of s. By taking the expectation of
ωt+1 in (4) with respect to the stationary distribution, for any given ωt, we have

E[ωt+1|ωt] = ωt + βt(bθ +Aθωt), (5)

where

Aθ := E(s,a,s′)[φ(s)(φ(s
′)− φ(s))⊤)], (6)

bθ := E(s,a)[(r(s, a) − J(θ))φ(s)],

and s ∼ µθ(·), a ∼ πθ(·|s), s′ ∼ P(·|s, a). It can easily shown that [12] the TD limiting point ω∗
θ satisfies:

bθ +Aθω
∗
θ = 0.

We define the following uniform upper bound for the critic approximation error:

ǫapp := sup
θ

√
Es∼µθ

(φ(s)⊤ω∗
θ − Vθ(s))2.

This error captures the quality of linear function approximation for critic. It can be expected that the learning errors
of Algorithm 1 depends on how well the linear function can approximate the true state-value function Vθ . The error
ǫapp is zero if Vθ is a linear function for any θ.

The following assumptions are standard in the literature of analyzing AC methods with linear function approximation
[20, 8, 10, 14, 13].

Assumption 3.1 (Exploration). For any θ, the matrix Aθ defined in (6) is negative definite and its maximum eigenvalue
can be upper bounded by −λ.

Assumption 3.1 is commonly adopted in analysing TD learning with learning function approximation [32, 33, 10,
34, 14, 13]. Such an assumption is made to guarantee the problem is solvable. As shown in [13] for tabular case,
Assumption 3.1 holds if the policy πθ can explore all state-action pairs, which assures the exploration of πθ. From

this assumption, we can choose Uω = 2Ur

λ
so that all ω∗ lie within the projection radius Uω because ‖b‖ ≤ 2Ur and

‖A−1‖ ≤ λ−1, which justifies the projection operator introduced in Line 8 of Algorithm 1.

5



Finite-time analysis of single-timescale actor-critic

Assumption 3.2 (Uniform ergodicity). For any θ, denote µθ(·) as the stationary distribution induced by the policy
πθ(·|s) and the transition probability measure P(·|s, a). For a Markov chain generated by the policy πθ and transition
kernel P , there exists m > 0 and ρ ∈ (0, 1) such that

dTV (P(sτ ∈ ·|s0 = s), µθ(·)) ≤ mρτ , ∀τ ≥ 0, ∀s ∈ S.

Assumption 3.2 assumes the Markov chain is geometrically mixing, which is commonly employed to characterize
the noise induced by Markovian sampling. It is first introduced in [32] and widely used in the finite-time analysis of
various RL algorithms with Markovian samples [33, 10, 14, 13].

Assumption 3.3 (Lipschitz continuity of policy). Let πθ(a|s) be a policy parameterized by θ ∈ R
d. There exists

positive constants B,Ll and Lπ such that for all given state s and action a it holds that: i) ‖∇ logπθ(a|s)‖ ≤
B, ∀θ ∈ R

d; ii) ‖∇ log πθ(a|s) − ∇ log πθ(a|s)‖ ≤ Ll‖θ1 − θ2‖, ∀θ1, θ2 ∈ R
d; iii) ‖πθ1(a|s) − πθ2(a|s)| ≤

Lπ‖θ1 − θ2‖, ∀θ1, θ2 ∈ R
d.

Assumption 3.3 is standard in the literature of policy gradient methods [35, 33, 29, 31, 10, 14, 13]. This assumption
holds for many policies classes such as Gaussian policy [36], Boltzmann policy [15], and tabular softmax policy [28].

We end this section by emphasizing that our work requires only a subset of the assumptions made in the existing
works on analyzing single-timescale AC [14, 13]. In particular, we do not require any of the strong assumptions on
the stationary distribution that are made in [14, Assumption 11]. Compared with [13], we consider the more general
continuous state-space beyond the restrictive tabular setting and consequently remove the non-redundancy assumption
for the feature matrix (see [13, Assumption 5]). Compare to both works, we are able to analyze the more challenging
Markovian sampling beyond the the i.i.d. sampling.

3.2 Main Theorem

To present our main result, we define an integer that depends on the number of total iteration T :

τT := min{i ≥ 0|mρi−1 ≤ 1√
T
},

where m, ρ are constants defined in Assumption 3.2. Therefore, we choose τT = logmρ−1

log ρ−1 + log T
2 log ρ−1 = O(logT )

such that mρτT−1 ≤ 1√
T

. The integer τT represents the mixing time of an ergodic Markov chain, which will be used

to control the Markovian noise in the analysis of the online AC algorithm.

We use the shorthand

yt := ηt − J(θt)

to denote the difference between the reward estimator at time t and the true time-average reward J(θt). We further use

zt := ωt − ω∗
t

with ω∗
t := ω∗

θt
to measure the error between the critic and its target value at iteration t.

Theorem 3.4 (Markovian sampling). Suppose that all assumptions hold and choose αt = cα√
1+t

, βt = γt = 1√
1+t

,

where cα is a small positive constant. For Algorithm 1, when total iteration T ≥ 2τT , we have

1

T − τT

T−1∑

t=τT

Ey2t =O(
log2 T√

T
) +O(ǫapp),

1

T − τT

T−1∑

t=τT

E‖zt‖2 =O(
log2 T√

T
) +O(ǫapp),

1

T − τT

T−1∑

t=τT

E‖∇J(θt)‖2 =O(
log2 T√

T
) +O(ǫapp).

We defer the interpretation of the above results a bit to present the analysis results of the i.i.d. sampling first. For the
i.i.d. sampling, the major difference from the Markovian sampling is that at the t-th iteration, the state st is sampled
from the stationary distribution µθt instead of the evolving Markov chain (see Algorithm 2 in Appendix E). The i.i.d.
sampling simplifies the analysis in which many noise terms reduce to zero effectively. This leads to an improved
sample complexity compared to the Markovian sampling by up to logarithmic factors.
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Theorem 3.5 (i.i.d. sampling). Suppose that all assumptions hold and choose αt =
cα√
1+t

, βt = γt =
1√
1+t

, where

cα is a small positive constant. For Algorithm 2, when total iteration T ≥ 2τT , we have

1

T − τT

T−1∑

t=τT

Ey2t =O(
1√
T
) +O(ǫapp),

1

T − τT

T−1∑

t=τT

E‖zt‖2 =O(
1√
T
) +O(ǫapp),

1

T − τT

T−1∑

t=τT

E‖∇J(θt)‖2 =O(
1√
T
) +O(ǫapp).

The above results show that if the critic approximation error ǫapp is zero, the reward estimator, the critic, and the actor

all converge at a sub-linear rate of Õ(T− 1
2 ). The additional logarithmic term hidden by Õ(·) is the cost of the mixing

time of the Markov chain, which can be removed under i.i.d. sampling. To put the results into perspective, note that

O(T− 1
2 ) is the rate one would obtain from stochastic gradient descent (SGD) on a non-convex function with unbiased

gradient updates. As a result, to obtain an ǫ-approximate stationary point from Algorithm 1 and Algorithm 2, the

corresponding sample complexity is Õ(ǫ−2) for Markovian sampling and O(ǫ−2) for i.i.d. sampling, which matches
the state-of-the-art performance of SGD on non-convex optimization problem.

This sample complexity compares favorably to other AC variants. Notably, [5] provided finite-time convergence for

double-loop variant with a O(ǫ−4) sample complexity and [10] analysed two-timescale variant, yielding a Õ(ǫ−2.5)
sample complexity. The sample complexity gap is due to the inefficient usage of data. In double-loop setting, the
critic starts over to estimate the Q-value for a fixed policy in the inner loop, ignoring the fact that the consecutive
Q-values can be similiar given relatively minor policy update. Besides, the two-timescale setting artificially slows
down the actor by giving the actor a stepsize that decays slower than the critic, which in turn delays the learning.
The single-timescale approach updates the critic and actor parallelly with proportional stepsizes and thus learns more
efficiently.

It is worth mentioning that our result matches the O(ǫ−2) sample complexity of policy gradient methods such as
REINFORCE [7, 35]. It is previously found in [10] that there is a sample complexity gap between Algorithm 1 and
REINFORCE [35], the former of which considered the two-timescale updates. In this paper, we fill this gap by giving
an improved single-timescale analysis for Algorithm 1. We show that the practical AC methods can have the same
sample complexity as REINFORCE.

3.3 Proof Sketch

The main challenge in the finite-time analysis lies in that the estimation errors of the time-average reward, the critic,
and the policy gradient are strongly coupled. To overcome this issue, we view the propagation of these errors as
an interconnected system and analyze them comprehensively. To better appreciate the advantage of our analysis
framework over the decoupled methods traditionally adopted in analyzing double-loop and two-timescale variants, we
sketch the main proof steps of Theorem 3.4 in the following, where we also highlight the key challenges and techniques
developed correspondingly. The supporting lemmas and theorems mentioned below can all be found in the Appendix.

We define three measures Y (T ), Z(T ), G(T ) which denote the average values of the (time-average) reward estimation
error, the critic error, and the square norm of the policy gradient, respectively:

Y (T ) :=
1

T − τT

T−1∑

t=τT

Ey2t , Z(T ) :=
1

T − τT

T−1∑

t=τT

E‖zt‖2, G(T ) :=
1

T − τT

T−1∑

t=τT

E‖∇J(θt)‖2. (7)

We first derive implicit (coupled) upper bounds for the reward estimation error yt, the critic error zt, and the
policy gradient ∇J(θt), respectively. After that, we solve an interconnected system of inequalities in terms of
Y (T ), Z(T ), G(T ) to establish the finite-time convergence.

Step 1: Reward estimation error analysis. From the reward estimator update rule (Line 7 of Algorithm 1), we
decompose the reward estimation error into:

y2t+1 =(1− 2γt)y
2
t + 2γtyt(rt − J(θt)) + 2yt(J(θt)− J(θt+1)) + (J(θt)− J(θt+1) + γt(rt − ηt))

2. (8)

The second term on the right hand side of (8) is a bias term caused by the Markovian sample, which is characterized
in Lemma C.1. As we shown in Lemma E.1, this bias reduces to 0 under i.i.d. sampling after taking the expectation.

7
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The third term captures the variation of the moving targets J(θt). The double-loop approach runs a complete policy
evaluation sub-problem in the inner loop for each target J(θt) such that a relative accurate policy gradient easily
ensures the monotonic decreasing of J(θt). The two-timescale approach requires limt→∞ αt/βt = 0 to guarantee this
term converges to zero. In the case of single-timescale AC, we don’t have the aforementioned specialized designs to
facilitate the analysis. Instead, utilizing the smoothness of J(θ), we derive an implicit upper bound for this term as a
function of the norm of yt and ∇J(θt). The convergence is then established simultaneously together with the implicit
bounds derived in Step 2 and Step 3. The last term in (8) reflects the variance in reward estimation, which is controlled
by the diminishing stepsizes.

Step 2: Critic error analysis. By the critic update rule (Line 8 of Algorithm 1), we decompose the squared error by
(neglecting the projection for the time being for the ease of comprehension)

‖zt+1‖2 =‖zt‖2 + 2βt〈zt, ḡ(ωt,Kt)〉+ 2βtΨ(Ot, ωt,Kt) + 2βt〈zt,∆g(Ot, ηt,Kt)〉
+ 2〈zt, ω∗

t − ω∗
t+1〉+ ‖βt(g(Ot, ωt,Kt) + ∆g(Ot, ηt,Kt)) + (ω∗

t − ω∗
t+1)‖2,

(9)

where Ot := (st, at, st+1) is a tuple of observations and the definitions of g, ḡ,∆g, and Ψ can be found in (16) and (17)
in Appendix A. Without diving into the detailed definitions, here we focus on illustrating the high-level insights of our
proof. First of all, the second term on the right hand side of (9) can be bounded by −2λβt‖zt‖2 due to Assumption 3.1.
It provides an explicit characterization of how sufficient exploration can help the convergence of learning. The third
term is a Markovian noise, which is further bounded implicitly in Lemma C.3. For the i.i.d sampling case, as we show
in Lemma E.1, this bias reduces to 0 after taking the expectation. The fourth term is caused by inaccurate reward and
critic estimations, which can be bounded by the norm of yt and zt. The fifth term tracks both the critic estimation
performance zt and the difference between the drifting critic targets ω∗

t . Similar to the case of Step 1, the double-loop
approach bound this term relying on the accurate policy evaluation sub-problem in the inner loop for each target ω∗

t ,
whereas the two-timescale approach ensures the convergence by additionally requiring limt→∞ αt/βt = 0. In contrast,
we establish an implicit bound for it by utilizing the Lipschitz continuity of the critic target provided in Lemma B.3.
The last term reflects the variances of various estimations, which is bounded by the diminishing stepsizes.

Step 3: Policy gradient norm analysis. From the actor update rule (Line 9 of Algorithm 1) and the smoothness
property of the performance function, we derive

‖∇J(θt)‖2 ≤ 1

αt

(J(θt+1)− J(θt))− 〈∇J(θt),∆h(Ot, ηt, ωt, θt)〉+Θ(Ot, θt)

− 〈∇J(θt),EO′

t
[∆h′(O′

t, θt)]〉+
LJ′

2
αt‖δt∇ log πθt(at|st)‖2,

(10)

where O′
t is a shorthand for an independent sample from stationary distribution s ∼ µθt , a ∼ πθt , s

′ ∼ P , Θ is defined
in (17), and LJ′ is a constant. The first term on the right hand side of (10) compares the actor’s performances between
consecutive updates, which can be bounded via Abel summation by parts. The second term is an error introduced by
the inaccurate estimations of both the time-average reward and the critic. This term was directly bounded to zero under
both double-loop setting and two-timescale setting due to their particular algorithm design, to facilitate a decoupled
analysis. We control this term by providing an implicit bound depending on yt, zt, and ∇J(θt). The third term is a
noise term induced by Markovian sampling, which is characterized in Lemma C.5. Again, as proven in Lemma E.1,
this bias reduces to 0 under i.i.d. sampling after taking the expectation. The fourth term comes from the linear
function approximation error. The last term can be considered as the variance of the stochastic gradient update, which
is controlled by the diminishing stepsizes.

Step 4: Interconnected iteration system analysis. Taking the expectation and summing (8), (9), and (10) from τT to
T − 1, respectively, we obtain the following interconnected iteration system in terms of Y (T ), Z(T ), G(T ):

Y (T ) ≤O(
log2 T√

T
) + a

√
Y (T )G(T ), (11)

Z(T ) ≤O(
log2 T√

T
) + bZ(T ) + c

√
Y (T )Z(T ), (12)

G(T ) ≤O(
log2 T√

T
) +O(ǫapp) + d

√
G(T )(2Y (T ) + 8Z(T )), (13)

where a, b, c, d are positive constants. By solving the above system of inequalities, we further prove that if 1− 2b > 0

and a
2 + ad2 + 4ac2d2

1−2b < 1, then Y (T ), Z(T ), G(T ) converge at a rate of O( log
2 T√
T

). This condition can be easily

satisfied by choosing the stepsize ratio cα to be smaller than a threshold given in (26). Thus, it completes the proof.

The above proof also applies to the i.i.d sampling case straightforwardly, with the corresponding terms pointed out in
the above steps reducing to 0 in the analysis. The additional proof can be found in Lemma E.1.
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4 Conclusion and Discussion

In this paper, we establish the first finite-time analysis for single-timescale AC method with Markovian sampling. Our
work outperforms all the existing works in terms of performing online learning and requiring weaker assumptions. We
provide a novel analysis framework that evaluates and controls the error propagation between time-average reward,
actor, and critic, and establishes their convergence simultaneously. Our framework is general and may provide new
insights for finite-time analysis of other single-timescale stochastic approximation algorithms.
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A Notation

We make use of the following auxiliary Markov chain to deal with the Markovian noise.

Auxiliary Markov Chain:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ−−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ−−−→ ãt−τ+2 · · · P−→ s̃t

θt−τ−−−→ ãt
P−→ s̃t+1. (14)

For reference, we also show the original Markov chain.

Original Markov Chain:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ+1−−−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ+2−−−−→ ãt−τ+2 · · · P−→ s̃t

θt−→ ãt
P−→ s̃t+1. (15)

In the sequel, we denote by Õt := (s̃t, ãt, s̃t+1) the tuple generated from the auxiliary Markov chain in (14) while
Ot := (st, at, st+1) denotes the tuple generated from the original Markov chain in (15).

We define the following functions, which will benefit to decompose the errors and simplify the presentation.

∆g(O, η, θ) := [J(θ)− η]φ(s),

g(O,ω, θ) := [r(s, a) − J(θ) + (φ(s′)− φ(s))⊤ω]φ(s),

ḡ(ω, θ) := E(s,a,s′)∼(µθ,πθ,P)[[r(s, a)− J(θ) + (φ(s′)− φ(s))⊤ω]φ(s)],

∆h(O, η, ω, θ) := (J(θ) − η + (φ(s′)− φ(s))⊤(ω − ω∗(θ))∇ log πθ(a|s),
∆h′(O, θ) := ((φ(s′)ω∗(θ)− Vθ(s

′)) − (φ(s)⊤ω∗(θ)− Vθ(s)))∇ log πθ(a|s),
h(O, θ) := (r(s, a) − J(θ) + φ(s′)⊤ω∗(θ) − φ(s)⊤ω∗(θ))∇ log πθ(a|s).

(16)

We also define the following functions, which characterize the Markovian noise.

Φ(O, η, θ) := (η − J(θ))(r(s, a) − J(θ)),

Ψ(O,ω, θ) := 〈ω − ω∗
θ , g(O,ω, θ)− ḡ(ω, θ)〉,

Θ(O,O′, θ) := 〈∇J(θ),EO′ [h(O′, θ)]− h(O, θ)〉,
(17)

where O′
t is a shorthand for an independent sample from stationary distribution s ∼ µθt , a ∼ πθt , s

′ ∼ P . Define
Uδ := 2Ur +2Uω so that we have |δt| ≤ Uδ, where δt comes from Line 6 in Algorithm 1. Note that from Assumption
3.3, we have ‖δ∇ log πθ‖ ≤ G := UδB.

11
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B Preliminary Lemmas

Lemma B.1 ([10], Lemma C.4). For any θ1, θ2, we have

|J(θ1)− J(θ2)| ≤ LJ‖θ1 − θ2‖,

where LJ = 2Ur|A|Lπ(1 + ⌈logρ m−1⌉+ 1
1−ρ

).

Lemma B.2 ([29], Lemma 3.2). For the performance function J(θ), there exists a constant LJ′ > 0 such that for all

θ1, θ2 ∈ R
d, it holds that

‖∇J(θ1)−∇J(θ2)‖ ≤ LJ′‖θ1 − θ2‖, (18)

which further implies

J(θ2) ≥ J(θ1) + 〈∇J(θ1), θ2 − θ1〉 −
LJ′

2
‖θ1 − θ2‖2, (19)

J(θ2) ≤ J(θ1) + 〈∇J(θ1), θ2 − θ1〉+
LJ′

2
‖θ1 − θ2‖2. (20)

Lemma B.3 ([10], Proposition 4.4). There exists a constant L∗ > 0 such that

‖ω∗(θ1)− ω∗(θ2)‖ ≤ L∗‖θ1 − θ2‖, ∀θ1, θ2 ∈ R
d,

where L∗ = (2λ−2Ur + 3λ−1Ur)|A|Lπ(1 + ⌈logρ m−1⌉+ 1
1−ρ

).

Lemma B.4 ([33],[10]). For any θ1 and θ2, it holds that

dTV (µθ1 , µθ2) ≤ |A|(⌈logρ m−1⌉+ 1

1− ρ
)‖θ1 − θ2‖,

dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2) ≤ |A|Lπ(1 + ⌈logρm−1⌉+ 1

1− ρ
)‖θ1 − θ2‖,

dTV (µθ1 ⊗ πθ1 ⊗ P , µθ2 ⊗ πθ2 ⊗ P) ≤ |A|Lπ(1 + ⌈logρm−1⌉+ 1

1− ρ
)‖θ1 − θ2‖.

Lemma B.5 ([10], Lemma B.2). Given time indexes t and τ such that t ≥ τ > 0, consider the auxiliary Markov chain
in (14). Conditioning on st−τ+1 and θt−τ , we have

dTV (P(st+1 ∈ ·),P(s̃t+1 ∈ ·)) ≤ dTV (P(Ot ∈ ·),P(Õt ∈ ·)),
dTV (P(Ot ∈ ·),P(Õt ∈ ·)) = dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)),

dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)) ≤ dTV (P(st ∈ ·),P(s̃t ∈ ·)) + 1

2
|A|E[‖θt − θt−τ‖].

C Proof of Main Theorem

C.1 Step 1: Reward estimation error analysis

In this subsection, we will establish an implicit bound for estimator.

Lemma C.1. From any t ≥ τ > 0, we have

E[Φ(Ot, ηt, θt)] ≤ 4UrLJ‖θt − θt−τ‖+ 2Ur|ηt − ηt−τ |+ 2U2
r |A|Lπ

t∑

i=t−τ

E‖θi − θt−τ‖+ 4U2
rmρτ−1.

Theorem C.2. Choose αt =
cα√
t+1

, βt = γt =
1√
t+1

, we have

1

T − τT

T−1∑

t=τT

Ey2t ≤ O(
log2 T√

T
) + cαG(

1

T − τT

T−1∑

t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑

t=τT

E‖∇J(θt)‖2)
1
2 . (21)
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Proof. From the update rule of reward estimator in Line 7 of Algorithm 1, we have

ηt+1 − J(θt+1) = ηt − J(θt) + J(θt)− J(θt+1) + γt(rt − ηt)

Then we have

y2t+1 = (yt + J(θt)− J(θt+1) + γt(rt − ηt))
2

≤ y2t + 2yt(J(θt)− J(θt+1)) + 2γtyt(rt − ηt) + 2(J(θt)− J(θt+1))
2 + 2γ2

t (rt − ηt)
2

= (1− 2γt)y
2
t + 2γtyt(rt − J(θt)) + 2yt(J(θt)− J(θt+1)) + 2(J(θt)− J(θt+1))

2 + 2γ2
t (rt − ηt)

2.

Taking expectation up to st+1 (the whole trajectory), rearranging and summing from τT to T − 1, we have

T−1∑

t=τT

E[y2t ] ≤
T∑

t=τT

1

2γt
E(y2t − y2t+1)

︸ ︷︷ ︸
I1

+

T−1∑

t=τT

E[yt(rt − J(θt))]

︸ ︷︷ ︸
I2

+

T−1∑

t=τT

1

γt
E[yt(J(θt)− J(θt+1)]

︸ ︷︷ ︸
I3

+

T−1∑

t=τT

1

γt
E[(J(θt)− J(θt+1))

2]

︸ ︷︷ ︸
I4

+

T−1∑

t=τT

γtE[(rt − ηt)
2]

︸ ︷︷ ︸
I5

.

For term I1, from Abel summation by parts, we have

I1 =

T−1∑

t=τT

1

2γt
(y2t − y2t+1)

=

T−1∑

t=τT+1

y2t (
1

2γt
− 1

2γt−1
) +

1

2γτt
y2τt −

1

γT−1
y2T

≤ 2U2
r

γT−1

= 2U2
r

√
T .

For term I2, from Lemma C.1, we have

E[yt(rt − J(θt))] ≤ 4UrLJ‖θt − θt−τ‖+ 2Ur|ηt − ηt−τ |+ 2U2
r |A|Lπ

t∑

i=t−τ

E‖θi − θt−τ‖+ 4U2
rmρτ−1

≤ 4UrLJGταt−τ + 4U2
r τγt−τ + 2U2

r |A|Lπτ(τ + 1)Gαt−τ + 4U2
rmρτ−1

≤ (4UrLJGτ + 2U2
r |A|LπGτ(τ + 1))αt−τ + 4U2

r τγt−τ + 4U2
rmρτ−1.

Choose τ = τT , we have

I2 =
T−1∑

t=τT

E[yt(rt − J(θt))]

≤ (4UrLJGτT + 2U2
r |A|LπGτT (τT + 1))

T−τT−1∑

t=0

αt + 4U2
r τT

T−τT−1∑

t=0

γt + 4U2
r

T−1∑

t=τT

1√
T

≤ (8UrLJGτT + 4U2
r |A|LπGτT (τT + 1) + 8U2

r τT + 8U2
r )
√
T − τT ,

where the last inequality is due to

T−τT−1∑

t=0

1√
(1 + t)

≤
∫ T−τT

0

t−
1
2 dt ≤ 2

√
T − τT .

For I3, if yt > 0, from (19), we have

yt(J(θt)− J(θt+1)) ≤ yt(
LJ′

2
‖θt − θt+1‖2 + 〈∇J(θt), θt − θt+1〉)

≤ LJ′Ur‖θt − θt+1‖2 + |yt|‖θt − θt+1‖‖∇J(θt)‖.
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If yt ≤ 0, from (20), we have

yt(J(θt)− J(θt+1)) ≤ yt(−
LJ′

2
‖θt − θt+1‖2 + 〈∇J(θt), θt − θt+1〉)

≤ LJ′Ur‖θt − θt+1‖2 + |yt|‖θt − θt+1‖‖∇J(θt)‖.

Overall, we get

I3 =

T−1∑

t=τT

1

γt
E[yt(J(θt)− J(θt+1))]

≤
T−1∑

t=τT

1

γt
E[LJ′Ur‖θt − θt+1‖2 + |yt|‖θt − θt+1‖‖∇J(θt)‖]

≤
T−1∑

t=τT

E[cαLJ′UrG
2αt + cαG|yt|‖∇J(θt)‖]

≤ 2c2αLJ′UrG
2
√
T − τT + cαG(

T−1∑

t=τT

Ey2t )
1
2 (

T−1∑

t=τT

E‖∇J(θt)‖2)
1
2 .

For term I4, we have

I4 =

T−1∑

t=τT

1

γt
E[(J(θt)− J(θt+1))

2]

≤
T−1∑

t=τT

1

γt
L2
JE‖θt − θt+1‖2

≤
T−1∑

t=τT

1

γt
L2
JG

2α2
t

= L2
JG

2cα

T−1∑

t=τT

αt

≤ 2L2
JG

2c2α
√
T − τT .

For term I5, we have

I5 =

T−1∑

t=τT

γtE[(rt − J(θt))
2]

≤
T−1∑

t=τT

4U2
r γt

≤ 8U2
r

√
T − τT .

Therefore, we get

T−1∑

t=τT

E[y2t ] ≤ (8UrLJGτT + 4U2
r |A|LπGτT (τT + 1) + 8U2

r (τT + 2) + 2c2αG
2(LJ′Ur + L2

J))
√
T − τT

+ 2U2
r

√
T + cαG(

T−1∑

t=τT

Ey2t )
1
2 (

T−1∑

t=τT

E‖∇J(θt)‖2)
1
2 .
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Choose T ≥ 2τT such that
√
T ≤ 2

√
T − τT and 1√

T−τT
≤ 2√

T
. Then we have

1

T − τT

T−1∑

t=τT

E[y2t ] ≤ (8UrLJGτT + 4U2
r |A|LπGτT (τT + 1) + 8U2

r (τT + 3) + 2c2αG
2(LJ′Ur + L2

J))
1√

T − τT

+ cαG(
1

T − τT

T−1∑

t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑

t=τT

E‖∇J(θt)‖2)
1
2

≤ 2(8UrLJGτT + 4U2
r |A|LπGτT (τT + 1) + 8U2

r (τT + 3) + 2c2αG
2(LJ′Ur + L2

J))
1√

T − τT

+ cαG(
1

T − τT

T−1∑

t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑

t=τT

E‖∇J(θt)‖2)
1
2

= O(
log2 T√

T
) + cαG(

1

T − τT

T−1∑

t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑

t=τT

E‖∇J(θt)‖2)
1
2 .

Thus we finish the proof.

C.2 Step 2: Critic error analysis

In this subsection, we will establish an implicit upper bound for critic.

Lemma C.3. Given the definition of Ψ(θt, ωt, Ot), for any t ≥ τ > 0, we have

E[Ψ(θt, ωt, Ot)] ≤ C1‖θt − θt−τ‖+ U2
δ |A|LπGτ(τ + 1)αt−τ + 2U2

δmρτ−1 + 6Uδ‖ωt − ωt−τ‖,

where C1 = 2U2
δ |A|Lπ(1 + ⌈logρm−1⌉+ 1

1−ρ
) + 2UδLJ + 2UδL∗.

Theorem C.4. Choose αt =
cα√
t+1

, βt = γt =
1√
t+1

, we have

1

T − τT

t∑

t=τt

E‖zt‖2 ≤ O(
log2 T√

T
) +

L∗Gcα
λ

(
1

T − τT

T−1∑

t=τT

E‖zt‖2)
1
2

+
1

2λ
(

1

T − τT

T−1∑

t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑

t=τT

E‖zt‖2)
1
2 .

(22)

Proof. From the update rule of critic in Line 8 of Algorithm 1, we have

‖ωt+1 − ω∗
t+1‖ = ‖ΠUω

(ωt + βtδtφ(st))− ω∗
t+1‖

= ‖ΠUω
(ωt + βtδtφ(st))−ΠUω

(ω∗
t+1)‖

≤ ‖ωt + βtδtφ(st)− ω∗
t+1‖

= ‖ωt + βt(g(Ot, ωt, θt) + ∆g(Ot, ηt, θt))− ω∗
t+1‖

= ‖ωt − ω∗
t + βt(g(Ot, ωt, θt) + ∆g(Ot, ηt, θt)) + ω∗

t − ω∗
t+1‖.

Therefore, we have

‖zt+1‖2 = ‖zt + βt(g(Ot, ωt, θt) + ∆g(Ot, ηt, θt)) + ω∗
t − ω∗

t+1‖2

= ‖zt‖2 + 2βt〈zt, g(Ot, ωt, θt)〉+ 2βt〈zt,∆g(Ot, ηt, θt)〉
+ 2〈zt, ω∗

t − ω∗
t+1〉+ ‖βt(g(Ot, ωt, θt) + ∆g(Ot, ηt, θt)) + ω∗

t − ω∗
t+1‖2

= ‖zt‖2 + 2βt〈zt, ḡ(ωt, θt)〉+ 2βtΛ(Ot, ωt, θt) + 2βt〈zt,∆g(Ot, ηt, θt)〉
+ 2〈zt, ω∗

t − ω∗
t+1〉+ ‖βt(g(Ot, ωt, θt) + ∆g(Ot, ηt, θt)) + ω∗

t − ω∗
t+1‖2

≤ ‖zt‖2 + 2βt〈zt, ḡ(ωt, θt)〉+ 2βtΛ(Ot, ωt, θt) + 2βt〈zt,∆g(Ot, ηt, θt)〉
+ 2〈zt, ω∗

t − ω∗
t+1〉+ 2U2

δ β
2
t + 2‖ω∗

t − ω∗
t+1‖2.
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Note that we have

〈zt, ḡ(ωt, θt)〉 = 〈zt, ḡ(ωt, θt)− ḡ(ω∗
t , θt)〉

= 〈zt,E[(φ(s′)− φ(s))⊤(ωt − ω∗
t )φ(s)]〉

= z⊤t E[φ(s)(φ(s
′)− φ(s))⊤]zt

= z⊤t Azt

≤ − λ‖zt‖2,

where the first equation is due to the fact that ḡ(ω∗
t , θt) = 0.

Taking expectation up to st+1, we have

E‖zt+1‖2 ≤ E‖zt‖2 + 2βtE〈zt, ḡ(ωt, θt)〉+ 2βtEΨ(Ot, ωt, θt) + 2βtE〈zt,∆g(Ot, ηt, θt)〉
+ 2E〈zt, ω∗

t − ω∗
t+1〉+ 2U2

δ β
2
t + 2E‖ω∗

t − ω∗
t+1‖2

≤ (1− 2λβt)E‖zt‖2 + 2βtEΨ(Ot, ωt, θt) + 2βtE〈zt,∆g(Ot, ηt, θt)〉
+ 2E〈zt, ω∗

t − ω∗
t+1〉+ 2U2

δ β
2
t + 2E‖ω∗

t − ω∗
t+1‖2

≤ (1− 2λβt)E‖zt‖2 + 2βtEΨ(Ot, ωt, θt) + 2βtE‖zt‖|yt|
+ 2L∗E‖zt‖ · ‖θt − θt+1‖+ 2U2

δ β
2
t + 2L2

∗E‖θt − θt+1‖2

≤ (1− 2λβt)E‖zt‖2 + 2βtEΨ(Ot, ωt, θt) + 2βtE‖zt‖|yt|
+ 2L∗GαtE‖zt‖+ 2U2

δ β
2
t + 2L2

∗G
2α2

t

≤ (1− 2λβt)E‖zt‖2 + 2βtEΨ(Ot, ωt, θt) + 2βt

√
Ey2t

√
E‖zt‖2

+ 2L∗Gαt

√
E‖zt‖2 + 2U2

δ β
2
t + 2L2

∗G
2α2

t ,

where the last inequality comes from Cauchy-Schwarz inequality.

Rearranging and summing from τT to T gives

2λ

T−1∑

τT

E‖zt‖2 ≤
T−1∑

t=τT

1

βt

(E‖zt‖2 − E‖zt+1‖2)
︸ ︷︷ ︸

I1

+2

T−1∑

t=τT

EΨ(Ot, ωt, θt)

︸ ︷︷ ︸
I2

+

T−1∑

t=τT

√
Ey2t

√
E‖zt‖2

︸ ︷︷ ︸
I3

+ 2L∗Gcα

T−1∑

t=τT

√
E‖zt‖2

︸ ︷︷ ︸
I4

+

T−1∑

t=τT

(2U2
δ βt + 2L2

∗G
2cααt)

︸ ︷︷ ︸
I5

.

In the sequel, we will control I1, I2, I3, I4, I5 respectively.

For term I1, from Abel summation by parts, we have

I1 =
T−1∑

t=τT

1

βt

(E‖zt‖2 − E‖zt+1‖2)

=

T−1∑

t=τT+1

(
1

βt

− 1

βt−1
)E‖zt‖2 +

1

βτT

E‖zτT ‖2 −
1

βT−1
E‖zT ‖2

≤ 4U2
ω(

T−1∑

t=τT+1

(
1

βt

− 1

βt−1
) +

1

βτT

)

= 4U2
ω

√
T ,

where the inequality is due to E‖zt‖2 ≤ 4U2
ω and discard the last term.
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For term I2, from Lemma C.3, choose τ = τT , we have

EΨ(Ot, ωt, θt) ≤ C1‖θt − θt−τT ‖+ U2
δ |A|LπGτT (τT + 1)αt−τT + 2U2

δmρτT−1 + 6Uδ‖ωt − ωt−τT ‖

≤ C1

t−1∑

k=t−τT

Gαk + U2
δ |A|LπGτT (τT + 1)αt−τT +

2U2
δ√
T

+ 6Uδ

t−1∑

k=t−τT

Uδβk

≤ (C1GτT + U2
δ |A|LπGτT (τT + 1))αt−τT +

2U2
δ√
T

+ 6U2
δ τTβt−τT .

Then we get

I2 = 2

T−1∑

T=τT

EΨ(Ot, ωt, θt)

≤ 2

T−1∑

T=τT

(C1GτT + U2
δ |A|LπGτT (τT + 1))αt−τ +

2U2
δ√
T

+ 6U2
δ τTβt−τT

≤ (4C1GτT cα + 4U2
δ |A|LπGτT (τT + 1)cα + 2U2

δ + 12U2
δ τT )

√
T − τT .

For term I3, we have

I3 =

T−1∑

t=τT

√
Ey2t

√
E‖zt‖2

≤ (

T−1∑

t=τT

Ey2t )
1
2 (

T−1∑

t=τT

E‖zt‖2)
1
2 .

For term I4, we have

I4 = 2L∗Gcα

T−1∑

t=τT

√
E‖zt‖2

≤ 2L∗Gcα(

T−1∑

t=τT

1)
1
2 (

T−1∑

t=τT

E‖zt‖2)
1
2

= 2L∗Gcα
√
T − τT (

T−1∑

t=τT

E‖zt‖2)
1
2 .

For term I5, we have

I5 =

T−1∑

t=τT

(2U2
δ βt + 2L2

∗G
2cααt)

≤ (4U2
δ + 4L2

∗G
2c2α)

√
T − τT .

Overall, we get

2λ

T−1∑

t=τT

E‖zt‖2 ≤ 4U2
ω

√
T + (4C1GτT cα + 4U2

δ |A|LπGτT (τT + 1)cα + 6U2
δ + 12U2

δ τT + 4L2
∗G

2c2α)
√
T − τT

+ (

T−1∑

t=τT

Ey2t )
1
2 (

T−1∑

t=τT

E‖zt‖2)
1
2 + 2L∗Gcα

√
T − τT (

T−1∑

t=τT

E‖zt‖2)
1
2 .
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Therefore, we have

1

T − τT

T−1∑

t=τT

E‖zt‖2 ≤ 1

λ
(4U2

ω + 4C1GτT cα + 4U2
δ |A|LπGτT (τT + 1)cα + 6U2

δ + 12U2
δ τT + 4L2

∗G
2c2α)

1√
T

+
L∗Gcα

λ
(

1

T − τT

T−1∑

t=τT

E‖zt‖2)
1
2 +

1

2λ
(

1

T − τT

T−1∑

t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑

t=τT

E‖zt‖2)
1
2

= O(
log2 T√

T
) +

L∗Gcα
λ

(
1

T − τT

T−1∑

t=τT

E‖zt‖2)
1
2

+
1

2λ
(

1

T − τT

T−1∑

t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑

t=τT

E‖zt‖2)
1
2 .

C.3 Step 3: Policy gradient norm analysis

In this subsection, we will establish an implicit upper bound for policy gradient norm.

Lemma C.5. For any t ≥ τ > 0, it holds that

E[Θ(Ot, θt)] ≤ D1(τ + 1)

t∑

k=t−τ+1

E‖θk − θk−1‖+D2mρτ−1,

where D1 = max{UδBLJ′ + 3LJLh, 2UδBLJ |A|Lπ} and D2 = 4UδBLJ .

Theorem C.6. We have

1

T − τT

T−1∑

t=τT

E‖∇J(θt)‖2 ≤O(
log2 T√

T
) +O(ǫapp)

+ B(
1

T − τT

T−1∑

t=τT

E‖∇J(θt)‖2)
1
2 (

2

T − τT

T−1∑

t=τT

Ey2t +
8

T − τT

T−1∑

t=τT

E‖zt‖2)
1
2 .

(23)

Proof. From the update rule of actor in Line 9 of Algorithm 1 and 19, we have

J(θt+1) ≥ J(θt) + 〈∇J(θt), θt+1 − θt〉 −
LJ′

2
‖θ1 − θ2‖2

= J(θt) + 〈∇J(θt), δt∇ log πθt(at|st)〉 −
LJ′

2
α2
t ‖δt∇ log πθt(at|st)‖2

= J(θt) + αt〈∇J(θt),∆h(Ot, ηt, ωt, θt)〉+ αt〈∇J(θt), h(Ot, θt)〉 −
LJ′

2
α2
t‖δt∇ log πθt(at|st)‖2

= J(θt) + αt〈∇J(θt),∆h(Ot, ηt, ωt, θt)〉 − αtΘ(Ot, θt)

+ αt〈∇J(θt),EO′ [h(O′, θt)]〉 −
LJ′

2
α2
t‖δt∇ log πθt(at|st)‖2

= J(θt) + αt〈∇J(θt),∆h(Ot, ηt, ωt, θt)〉 − αtΘ(Ot, θt) + αt‖∇J(θt)‖2

+ αt〈∇J(θt),EO′ [∆h′(O′, θt)]〉 −
LJ′

2
α2
t ‖δt∇ log πθt(at|st)‖2,

where the last equality is due to the fact

EO′ [h(O′, θ)−∆h′(O′, θ)] = EO′ [(r(s, a) − J(θ) + Vθ(s
′)− Vθ(s))∇ log πθ(a|s)] = ∇J(θ).

Rearranging the above inequality and taking expectation, we have

E‖∇J(θt)‖2 ≤ 1

αt

(E[J(θt+1)− J(θt)])− E〈∇J(θt),∆h(Ot, ηt, ωt, θt)〉+ E[Θ(Ot, θt)]

− E〈∇J(θt),EO′ [∆h′(O′, θt)]〉+
LJ′

2
αtE‖δt∇ log πθt(at|st)‖2.
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Note that from Cauchy-Schwartz inequality, we have

−E〈∇J(θt),∆h(Ot, ηt, ωt, θt)〉 ≤ B
√
E‖∇J(θt)‖2

√
2Ey2t + 8E‖zt‖2.

From Lemma C.5 and choosing τ = τT , we have

E[Θ(Ot, θt)] ≤D1(τT + 1)

t∑

k=t−τT+1

E‖θk − θk−1‖+D2mρτT−1

≤D1(τT + 1)G

t−1∑

k=t−τT

αk +D2mρτT−1

≤ GD1(τT + 1)2αt−τT +D2
1√
T
.

Furthermore, it holds that

EO′‖∇h′(O, θ)‖2 = EO′‖((φ(s′)⊤ω∗ − Vθ(s
′))− (φ(s)⊤ω∗ − Vθ(s)))∇ log πθ(a|s)‖2

≤ EO′ [B2((φ(s′)⊤ω∗ − Vθ(s
′))− (φ(s)⊤ω∗ − Vθ(s)))

2]

≤ EO′ [2B2(φ(s′)⊤ω∗ − Vθ(s
′))2 + (φ(s)⊤ω∗ − Vθ(s))

2]

= 4B2
EO′ [(φ(s)⊤ω∗(θ) − Vθ(s))

2]

= 4B2ǫ2app.

Therefore, we have

−〈∇J(θt),EO′ [∆h′(O′, θt)]〉 ≤ LJ

√
‖EO′ [∆h′(Ot, θt)]‖2

≤ LJ

√
EO′‖∆h′(Ot, θt)‖2

≤ 2BLJǫapp,

where we use ‖∇J(θ)‖ ≤ LJ which comes from lemma B.1. Plugging the three terms yields

E‖∇J(θt)‖2 ≤ 1

αt

(E[J(θt+1)]− E[J(θt)]) +B
√
E‖∇J(θt)‖2

√
2Ey2t + 8E‖zt‖2

+ 2BLJǫapp +GD1(τT + 1)2αt−τT +D2
1√
T

+
LJ′

2
G2αt.

Summing over t from τT to T − 1 gives

T−1∑

t=τT

E‖∇J(θt)‖2 ≤
T−1∑

t=τT

1

αt

(E[J(θt+1)− E[J(θt)])

︸ ︷︷ ︸
I1

+B

T−1∑

t=τT

√
E‖∇J(θt)‖2

√
2Ey2t + 8E‖zt‖2

+

T−1∑

t=τT

GD1(τT + 1)2αt−τT

︸ ︷︷ ︸
I2

+D2

√
T − τT + 2BLJǫapp(T − τT ).

In the following, we will bound I1, I2 respectively.
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For term I1, from Abel summation by parts, we have

I1 =

T−1∑

t=τT

1

αt

(E[J(θt+1)− E[J(θt)])

=

T−1∑

t=τT+1

(
1

αt−1
− 1

αt

)E[J(θt)]− E[J(θτT )]
1

ατT

+
1

αT−1
E[J(θT )]

≤
T−1∑

t=τT+1

(
1

αt

− 1

αt−1
)Ur +

1

ατT

Ur +
1

αT−1
Ur

=
2Ur

αT−1

=
2Ur

cα

√
T .

For term I2, we have

I2 =

T−1∑

t=τT

GD1(τT + 1)2αt−τT

≤ 2GD1(τT + 1)2
√
T − τT .

Overall, we have

T−1∑

t=τT

E‖∇J(θt)‖2 ≤ 2Ur

cα

√
T + (2GD1(τT + 1)2 +D2)

√
T − τT + 2BLJǫapp(T − τT )

+B

T−1∑

t=τT

√
E‖∇J(θt)‖2

√
2Ey2t + 8E‖zt‖2

≤ 2Ur

cα

√
T + (2GD1(τT + 1)2 +D2)

√
T − τT + 2BLJǫapp(T − τT )

+B(
T−1∑

t=τT

E‖∇J(θt)‖2)
1
2 (2

T−1∑

t=τT

Ey2t + 8
T−1∑

t=τT

E‖zt‖2)
1
2 .

Therefore, we get

1

T − τT

T−1∑

t=τT

E‖∇J(θt)‖2 ≤ (
4Ur

cα
+ 4GD1(τT + 1)2 + 2D2)

1√
T

+ 2BLJǫapp

+B(
1

T − τT

T−1∑

t=τT

E‖∇J(θt)‖2)
1
2 (

2

T − τT

T−1∑

t=τT

Ey2t +
8

T − τT

T−1∑

t=τT

E‖zt‖2)
1
2

= O(
log2 T√

T
) +O(ǫapp)

+B(
1

T − τT

T−1∑

t=τT

E‖∇J(θt)‖2)
1
2 (

2

T − τT

T−1∑

t=τT

Ey2t +
8

T − τT

T−1∑

t=τT

E‖zt‖2)
1
2 ,

which concludes the proof.

C.4 Step 4: Interconnected iteration system analysis

In this subsection, we perform an interconnected iteration system analysis to prove Theorem 3.4.

Proof of Theorem 3.4.
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Proof. Combining (21), (22), and (23), we have

Y (T ) ≤ O(
log2 T√

T
) + cαG

√
Y (T )G(T ),

Z(T ) ≤ O(
log2 T√

T
) +

L∗Gcα
λ

Z(T ) +
1

2λ

√
Y (T )Z(T ),

G(T ) ≤ O(
log2 T√

T
) +O(ǫapp) +B

√
G(T )(2Y (T ) + 8Z(T )).

Denote

a := cαG,

b :=
L∗Gcα

λ
,

c :=
1

2λ
,

d := B.

Then we have

Y (T ) ≤ O(
log2 T√

T
) + a

√
Y (T )G(T ),

Z(T ) ≤ O(
log2 T√

T
) + bZ(T ) + c

√
Y (T )Z(T ),

G(T ) ≤ O(
log2 T√

T
) +O(ǫapp) + d

√
G(T )(2Y (T ) + 8Z(T )).

For G(T ), we get

G(T ) ≤ O(
log2 T√

T
) +O(ǫapp) +

1

2
G(T ) + d2(Y (T ) + 4Z(T )),

G(T ) ≤ O(
log2 T√

T
) +O(ǫapp) + 2d2(Y (T ) + 4Z(T )). (24)

For Z(T ), we have

Z(T ) ≤ O(
log2 T√

T
) + bZ(T ) +

1

2
Z(T ) +

c2

2
Y (T ).

If 1− 2b > 0, we further have

Z(T ) ≤ O(
log2 T√

T
) +

c2

1− 2b
Y (T ). (25)

For Y (T ), we get

Y (T ) ≤ O(
log2 T√

T
) +

a

2
(Y (T ) +G(T )).

Plugging (24) and (25) into the above inequality gives

Y (T ) ≤ O(
log2 T√

T
) +O(ǫapp) +

a

2
(Y (T ) + 2d2Y (T ) + 8d2Z(T ))

≤ O(
log2 T√

T
) +O(ǫapp) +

a

2
(Y (T ) + 2d2Y (T ) +

8d2c2

1− 2b
Y (T ))

= O(
log2 T√

T
) +O(ǫapp) + (

a

2
+ ad2 +

4ac2d2

1 − 2b
)Y (T ).
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Therefore, if a
2 + ad2 + 4ac2d2

1−2b < 1, we have

Y (T ) = O(
log2 T√

T
) +O(ǫapp).

According to the definition of a, b, c, d, we have

a

2
+ ad2 +

4ac2d2

1 − 2b
= cαG(

1

2
+B2 +

B2

λ2 − 2λL∗Gcα
).

Since we have to satisfy 1− 2b > 0, thus we choose cα small enough such that 1− 2b ≥ 1
2 , which implies

cα ≤ λ

4L∗G
.

Therefore, we further have

a

2
+ ad2 +

4ac2d2

1− 2b
= cαG(

1

2
+B2 +

B2

λ2 − 2λL∗Gcα
)

≤ cαG(
1

2
+B2 +

2B2

λ2
).

To satisfy cαG(12 +B2 + 2B2

λ2 ) < 1, we choose

cα <
2λ2

G(λ2 + 2B2λ2 + 4B2)
.

Overall, we choose

cα < min{ λ

4L∗G
,

2λ2

G(λ2 + 2B2λ2 + 4B2)
}. (26)

Therefore, we have

Y (T ) = O(
log2 T√

T
) +O(ǫapp),

and consequently,

Z(T ) = O(
log2 T√

T
) +O(ǫapp),

G(T ) = O(
log2 T√

T
) +O(ǫapp).

Thus we conclude our proof.

D Proof of Supporting Lemmas

The following three lemmas only deal with the Markovian noise, which are originally proved in [10] and updated in
[37]. We include the proof with slight modifications for proving Theorem 3.4.

Proof of Lemma C.1.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any θ1, θ2, η, O = (s, a, s′), we have

|Φ(O, η, θ1)− Φ(O, η, θ2)| ≤ 4UrLJ‖θ1 − θ2‖. (27)

By the definition of Φ(O, η, θ) in (17), we have

|Φ(O, η, θ1)− Φ(O, θ, θ2)| = |(η − J(θ1))(r − J(θ1))− (η − J(θ2))(r − J(θ2))|
≤ |(η − J(θ1))(r − J(θ1))− (η − J(θ1))(r − J(θ2))|

+ |(η − J(θ1))(r − J(θ2))− (η − J(θ2))(r − J(θ2))|
≤ 4Ur|J(θ1)− J(θ2)|
≤ 4UrLJ‖θ1 − θ2‖.
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Step 2: show that for any θ, η1, η2, O, we have

|Φ(O, η1, θ)− Φ(O, η2, θ) ≤ 2Ur|η1 − η2|. (28)

By definition, we have

|Φ(O, η1, θ)− Φ(O, η2, θ)| = |(η1 − J(θ))(r − J(θ))− (η2 − J(θ))(r − J(θ))|
≤ 2Ur|η1 − η2|.

Step 3: show that for original tuple Ot and the auxiliary tuple Õt, conditioned on st−τ−1 and θt−τ , we have

|E[Φ(Ot, ηt−τ , θt−τ )− E[Φ(Õt, ηt−τ , θt−τ )]| ≤ 2U2
r |A|Lπ

t∑

k=t−τ

E‖θk − θt−τ‖. (29)

By definition, we have

E[Φ(Ot, ηt−τ , θt−τ )− E[Φ(Õt, ηt−τ , θt−τ )] = (ηt−τ − J(θt−τ ))E[r(st, at)− r(s̃t, ãt)].

By definition of total variation norm, we have

E[r(st, at)− r(s̃t, ãt)] ≤ 2UrdTV (P(Ot ∈ ·|st−τ+1, θt−τ ),P(Õt ∈ ·|st−τ+1, θt−τ )). (30)

By Lemma B.5, we get

dTV (P(Ot ∈ ·|st−τ+1, θt−τ ),P(Õt ∈ ·|st−τ+1, θt−τ ))

= dTV (P((st, at) ∈ ·|st−τ+1, θt−τ ),P((s̃t, ãt) ∈ ·|st−τ+1, θt−τ ))

≤ dTV (P(st ∈ ·|st−τ+1, θt−τ ),P(s̃t ∈ ·|st−τ+1, θt−τ )) +
1

2
LπE‖θt − θt−τ‖

≤ dTV (P(Ot−1 ∈ ·|st−τ+1, θt−τ ),P(Õt−1 ∈ ·|st−τ+1, θt−τ )) +
1

2
LπE‖θt − θt−τ‖.

Repeat the above argument from t to t− τ + 1, we have

dTV (P(Ot ∈ ·|st−τ+1, θt−τ ),P(Õt ∈ ·|st−τ+1, θt−τ )) ≤
1

2
|A|

t∑

k=t−τ

E‖θk − θt−τ‖. (31)

Plugging (31) into (30), we have

|E[Φ(Ot, ηt−τ , θt−τ )− E[Φ(Õt, ηt−τ , θt−τ )]| ≤ 2U2
r |A|Lπ

t∑

k=t−τ

E‖θk − θt−τ‖.

Step 4: show that conditioned on st−τ+1 and θt−τ , we have

E[Φ(Õt, ηt−τ , θt−τ )] ≤ 4U2
rmρτ−1. (32)

Note that according to definition, we have

E[Φ(O′
t−τ , ηt−τ , θt−τ )|θt−τ ] = 0,

where O′
t−τ = (s′t−τ , a

′
t−τ , s

′
t−τ+1) is the tuple generated by s′t−τ ∼ µt−τ , a

′
t−τ ∼ πθt−τ

, s′t−τ+1 ∼ P . From the
uniform ergodicity in Assumption 3.2, it shows that

dTV (P(s̃t = ·|st−τ+1, θt−τ ), µθt−τ
) ≤ mρτ−1.

Then we have

E[Φ(Õt, ηt−τ , θt−τ )] = E[Φ(Õt, ηt−τ , θt−τ )− Φ(O′
t−τ , ηt−τ , θt−τ )]

= E[(ηt−τ − J(θt−τ ))(r(s̃t, ãt)− r(s′t−τ , a
′
t−τ ))]

≤ 4U2
r dTV (P(Õt−τ = ·|st−τ+1, θt−τ ), µθt−τ

⊗ πθt−τ
⊗ P)

≤ 4U2
rmρτ−1.

Combing (27), (28), (29), and (32), we have

E[Φ(Ot, ηt, θt)] = E[Φ(Ot, ηt, θt)− Φ(Ot, ηt, θt−τ )] + E[Φ(Ot, ηt, θt−τ )− Φ(Ot, ηt−τ , θt−τ )]

+ E[Φ(Ot, ηt−τ , θt−τ )− Φ(Õt, ηt−τ , θt−τ )] + E[Φ(Õt, ηt−τ , θt−τ )]

≤ 4UrLJ‖θt − θt−τ‖+ 2Ur|ηt − ηt−τ |+ 2U2
r |A|Lπ

t∑

i=t−τ

E‖θi − θt−τ‖+ 4U2
rmρτ−1,

which concludes the proof.
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Proof of Lemma C.3.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any θ1, θ2, ω and tuple O = (s, a, s′), we have

|Ψ(O,ω, θ1)−Ψ(O,ω, θ2) ≤ C1‖θ1 − θ2‖, (33)

where C1 = 2U2
δ |A|Lπ(1 + ⌈logρm−1⌉+ 1

1−ρ
) + 2UδLJ + 2UδL∗.

By definition of Ψ(O,ω, θ) in (17), we have

|Ψ(O,ω, θ1)−Ψ(O,ω, θ2)| = |〈ω − ω∗
1 , g(O,ω, θ1)− ḡ(ω, θ1)〉 − 〈ω − ω∗

2 , g(O,ω, θ2)− ḡ(ω, θ2)〉|
≤ |〈ω − ω∗

1 , g(O,ω, θ1)− ḡ(ω, θ1)〉 − 〈ω − ω∗
1 , g(O,ω, θ2)− ḡ(ω, θ2)〉|︸ ︷︷ ︸

I1

+ |〈ω − ω∗
1 , g(O,ω, θ2)− ḡ(ω, θ2)〉 − 〈ω − ω∗

2 , g(O,ω, θ2)− ḡ(ω, θ2)〉|︸ ︷︷ ︸
I2

.

For term I1, we have

I1 = |〈ω − ω∗
1 , g(O,ω, θ1)− ḡ(ω, θ1)〉 − 〈ω − ω∗

1 , g(O,ω, θ2)− ḡ(ω, θ2)〉|
= |〈ω − ω∗

1 , g(O,ω, θ1)− g(O,ω, θ2)〉|+ |〈ω − ω∗
1 , ḡ(ω, θ1)− ḡ(ω, θ2)〉|

= |〈ω − ω∗
1 , φ(s)(J(θ1)− J(θ2))〉| + |〈ω − ω∗

1 , ḡ(ω, θ1)− ḡ(ω, θ2)〉|
≤ 2UωLJ‖θ1 − θ2‖+ 2Uω‖ḡ(ω, θ1)− ḡ(ω, θ2)‖
≤ 2UωLJ‖θ1 − θ2‖+ 2Uω · 2UδdTV (µθ1 ⊗ πθ1 ⊗ P , µθ2 ⊗ πθ2 ⊗ P)

≤ 2UωLJ‖θ1 − θ2‖+ 2U2
δ dTV (µθ1 ⊗ πθ1 ⊗ P , µθ2 ⊗ πθ2 ⊗ P)

≤ (2UδLJ + 2U2
δ |A|Lπ(1 + ⌈logρm−1⌉+ 1

1− ρ
)‖θ1 − θ2‖,

where we use the fact that Uδ = 2Ur + 2Uω and the last inequality comes from Lemma B.4.

For term I2, from Cauchy-Schwartz inequality, we have

I2 = |〈ω − ω∗
1 , g(O,ω, θ2)− ḡ(ω, θ2)〉 − 〈ω − ω∗

2 , g(O,ω, θ2)− ḡ(ω, θ2)〉|
= |〈ω∗

1 − ω∗
2 , g(O,ω, θ2)− ḡ(ω, θ2)〉|

≤ 2Uδ‖ω∗
1 − ω∗

2‖
≤ 2UδL∗‖θ1 − θ2‖.

Combining the results from I1 and I2, we get

|Ψ(O,ω, θ1)−Ψ(O,ω, θ2) ≤ C1‖θ1 − θ2‖,
where C1 = 2U2

δ |A|Lπ(1 + ⌈logρm−1⌉+ 1
1−ρ

) + 2UδLJ + 2UδL∗.

Step 2: show that for any θ, ω1, ω2 and tuple O(s, a, s′), we have

|Ψ(O,ω1, θ)−Ψ(O,ω2, θ)| ≤ 6Uδ‖ω1 − ω2‖. (34)

By definition, we have

|Ψ(O,ω1, θ)−Ψ(O,ω2, θ)| = |〈ω1 − ω∗, g(O,ω1, θ)− ḡ(ω1, θ)〉 − 〈ω2 − ω∗, g(O,ω2, θ)− ḡ(ω2, θ)〉|
≤ |〈ω1 − ω∗, g(O,ω1, θ)− ḡ(ω1, θ)〉 − 〈ω1 − ω∗, g(O,ω2, θ)− ḡ(ω2, θ)〉|

+ |〈ω1 − ω∗, g(O,ω2, θ)− ḡ(ω2, θ)〉 − 〈ω2 − ω∗, g(O,ω2, θ)− ḡ(ω2, θ)〉|
≤ 2Uω‖(g(O,ω1)− g(O,ω2)) − (ḡ(ω1, θ)− ḡ(ω2, θ))‖ + 2Uδ‖ω1 − ω2‖
≤ 6Uδ‖ω1 − ω2‖,

where the last inequality is due to ‖g(O,ω1, θ) − g(O,ω2, θ)‖ = |(φ(s′) − φ(s))⊤(ω1 − ω2)| ≤ 2‖ω1 − ω2‖,
‖ḡ(ω1, θ)− ḡ(ω2, θ)‖ ≤ 2‖ω1 − ω2‖, and 2Uω ≤ Uδ.

Step 3: show that for tuples Ot = (st, at, st+1) and Õt = (s̃t, ãt, s̃t+1). Conditioning on st−τ+1 and θt−τ , we have

E[Ψ(Ot, ωt−τ , θt−τ )−Ψ(Õt, ωt−τ , θt−τ )] ≤ U2
δ |A|Lπ

t∑

k=t−τ

E‖θk − θt−τ‖. (35)
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By the definition of total variation norm, we have

E[Ψ(Ot, ωt−τ , θt−τ )−Ψ(Õt, ωt−τ , θt−τ )] ≤ E[〈ωt−τ − ω∗
t−τ , g(Ot, ωt−τ , θt−τ )− g(Õt, ωt−τ , θt−τ ))]

≤ 2U2
δ dTV (P(Ot ∈ ·|st−τ+1, θ−τ ),P(Õt ∈ ·|st−τ+1, θt−τ ))

≤ U2
δ |A|Lπ

t∑

k=t−τ

E‖θk − θt−τ‖

≤ U2
δ |A|LπGτ(τ + 1)αt−τ ,

where the last inequality comes from (31).

Step 4: show that conditioning on st−τ+1 and θt−τ ,

E[Ψ(Õt, ωt−τ , θt−τ )] ≤ 2U2
δmρτ−1 (36)

From the definition of Ψ(O,ω, θ), we have

E[Ψ(O′
t−τ , ωt−τ , θt−τ )|st−τ+1, θt−τ ] = 0,

where O′
t−τ is the tuple generated by s′t−τ ∼ µθt−τ

, a′t−τ ∼ πθt−τ
, s′t−τ+1 ∼ P . From Assumption 3.2, we have

dTV (P(s̃t = ·|st−τ+1, θt−τ ), µθt−τ
) ≤ mρτ−1.

Then, it holds that

E[Ψ(Õt, ωt−τ , θt−τ )] = E[Ψ(Õt, ωt−τ , θt−τ )−Ψ(O′
t−τ , ωt−τ , θt−τ )]

= E〈ωt−τ − ω∗
t−τ , g(Õt, ωt−τ , θt−τ − g(O′

t−τ , ωt−τ , θt−τ )〉
≤ 4UωUδdTV (P(Õt = ·|st−τ+1, θt−τ ), µθt−τ

⊗ πθt−τ
⊗ P)

≤ 2U2
δ dTV (P(Õt = ·|st−τ+1, θt−τ ), µθt−τ

⊗ πθt−τ
⊗ P)

= 2U2
δ dTV (P((s̃t, ãt) ∈ ·|st−τ+1, θt−τ ), µθt−τ

⊗ πθt−τ
)

= 2U2
δ dTV (P(s̃t = ·|st−τ+1, θt−τ ), µθt−τ

)

≤ 2U2
δmρτ−1.

Combining (33), (34), (35), and (36), we have

E[Ψ(Ot, ωt, θt)] = E[Ψ(Ot, ωt, θt)−Ψ(Ot, ωt, θt−τ )] + E[Ψ(Ot, ωt, θt−τ )−Ψ(Ot, ωt−τ , θt−τ )]

+ E[Ψ(Ot, ωt−τ , θt−τ )−Ψ(Õt, ωt−τ , θt−τ )] + E[Ψ(Õt, ωt−τ , θt−τ )]

≤ C1‖θt − θt−τ‖+ U2
δ |A|LπGτ(τ + 1)αt−τ + 2U2

δmρτ−1 + 6Uδ‖ωt − ωt−τ‖,

where C1 = 2U2
δ |A|Lπ(1 + ⌈logρm−1⌉+ 1

1−ρ
) + 2Uδ(LJ + L∗).

Proof of Lemma C.5.

Proof. We will divide the proof of this lemma into three steps.

Step 1: show that

|Θ(Ot, θt−τ )−Θ(Õt, θt−τ )| ≤ (2UδBLJ′ + 3LJLh)‖θt − θt−τ‖, (37)

where Lh = UδLl + (2 + 2λ−2 + 3λ−1)BUr|A|Lπ(1 + ⌈logρm−1⌉+ 1/(1− ρ)).

Since Θ(O, θ) = 〈∇J(θ),Eθ [h(O
′, θ)]− h(O, θ)〉, we will show that each term in Θ(O, θ) is Lipschitz.

For the term ∇J(θ), by Lemma B.3 we know it’s LJ′-Lipschitz.
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For term h(O, θ), denote δ(O, θ) := r(s, a)− r(θ) + (φ(s′)− φ(s))⊤ω∗, we have

‖h(O, θ1)− h(O, θ2)‖ = ‖δ(O, θ1)∇ log πθ1(a|s)− δ(Ot, θ2)∇ log πθ2(a|s)‖
≤ ‖δ(O, θ1)∇ log πθ1(a|s)− δ(O, θ1)∇ log πθ2(a|s)‖

+ ‖δ(O, θ1)∇ log πθ2(a|s)− δ(O, θ2)∇ log πθ2(a|s)‖
≤ UδLl‖θ1 − θ2‖+B|δ(O, θ1)− δ(O, θ2)|
≤ UδLl‖θ1 − θ2‖+B(|r(θ1)− r(θ2)|+ ‖φ(s′)− φ(s)‖ · ‖ω∗(θ1)− ω∗(θ2)‖)
≤ (UδLl + 2BL∗)‖θ1 − θ2‖+B|Es∼µθ1

,a∼πθ1
[r(s, a)]− Es∼µθ1

,a∼πθ2
[r(s, a)]|

≤ (UδLl + 2BL∗)‖θ1 − θ2‖+ 2BUrdTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ (UδLl + 2BL∗ + 2BUr|A|Lπ(1 + ⌈logρm−1⌉+ 1

1− ρ
))‖θ1 − θ2‖.

Hence we have h(O, θ) is Lh-Lipschitz, where Lh denotes the above coefficient.

For term Eθ[h(O
′, θ)], we have

‖Eθ1 [h(Ot, θ1)]− Eθ2 [h(O
′, θ2)]‖ ≤ ‖Eθ1 [h(Ot, θ1)]− Eθ1 [h(Ot, θ2)]‖+ ‖Eθ1 [h(Ot, θ2)]− Eθ2 [h(Ot, θ2)]‖

≤ Eθ1 [‖h(O′, θ1)− h(O′, θ2)‖] + ‖Eθ1 [h(Ot, θ2)]− Eθ2 [h(Ot, θ2)]‖
≤ Lh‖θ1 − θ2‖+ ‖Eθ1 [h(Ot, θ2)]− Eθ2 [h(Ot, θ2)]‖
≤ Lh‖θ1 − θ2‖+ 2BUrdTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ [Lh + 2BUr|A|Lπ(1 + ⌈logρ m−1⌉+ 1

1− ρ
)]‖θ1 − θ2‖

≤ 2Lh‖θ1 − θ2‖.
Then we have ∇J(θ) is LJ-bounded and LJ′-Lipschitz; h(O, θ)−Eθ[h(O

′, θ)] is 3Lh-Lipschitz and 2UδB-bounded.
By the triangle inequality, we have

Θ(Ot, θt)−Θ(Ot, θt−τ ) ≤ (2UδBLJ′ + 3LJLh)‖θt − θt−τ‖
Step 2: show that for t ≥ τ > 0, we have

|E[Θ(Ot, θt−τ )−Θ(Õt, θt−τ )]| ≤ 2UδBLJ |A|Lπ

t∑

k=t−τ

‖θk − θt−τ‖ (38)

By definition of Θ(O, θ), we have

|E[Θ(Ot, θt−τ )−Θ(Õt, θt−τ )]| = |E[〈∇J(θt−τ ), h(Õt, θt−τ )− h(Ot, θt−τ )]|
= |E[〈∇J(θt−τ ), h(Õt, θt−τ )〉 − E[〈∇J(θt−τ ), h(Ot, θt−τ )〉]|
≤ 4UδBLJdTV (P(Ot ∈ ·|st−τ+1, θt−τ ),P(Õt ∈ ·|st−τ+1, θt−τ )), (39)

where the inequality comes from the definition of total variation distance. The total variation norm between Ot and

Õt has been computed in (31). Plugging (31) into (39), we get

|E[Θ(Ot, θt−τ )−Θ(Õt, θt−τ )]| ≤ 2UδBLJ |A|Lπ

t∑

k=t−τ

‖θk − θt−τ‖.

Step 3: show that for t ≥ τ > 0, we have

|E[Θ(Õt, θt−τ −Θ(O′
t, θt−τ )]| ≤ 4UδBLJmρτ−1. (40)

From the definition of Θ(O, θ), we have

|E[Θ(Õt, θt−τ )−Θ(O′
t, θt−τ )]| = |E[〈∇J(θt−τ ), h(O

′
t, θt−τ )〉 − 〈∇J(θt−τ ), h(Õt, θt−τ )〉]|

≤ 4UδBLJdTV (P(Õt ∈ ·|st−τ+1, θt−τ ), µθt−τ
⊗ πθt−τ

⊗ P).

The inequality is due to the definition of total variation distance. From Assumption 3.2, we know that

dTV (P(s̃t ∈ ·), µθt−τ
) ≤ mρτ−1.
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We also have the fact that

P(Õt ∈ ·|st−τ+1, θt−τ ) = P(s̃t ∈ ·|st−τ+1, θt−τ )⊗ πθt−τ
⊗ P .

Therefore, we have

|E[Θ(Õt, θt−τ −Θ(O′
t, θt−τ )]| ≤ 4UδBLJmρτ−1.

Combining (37), (38), and (40), we can decompose the Markovian bias as

E[Θ(Ot, θt)] = E[Θ(Ot, θt)−Θ(Ot, θt−τ )] + E[Θ(Ot, θt−τ )−Θ(Õt, θt−τ )]

+ E[Θ(Õt, θt−τ )−Θ(O′
t, θt−τ )] + E[Θ(O′

t, θt−τ )],

where Õt is from the auxiliary Markovian chain defined in (14) and O′
t is from the stationary distribution which

satisfies E[Θ(O′
t, θt−τ )] = 0.

Then we have

E[Θ(Ot, θt)] ≤ (2UδBLJ′ + 3LJLh)E‖θt − θt−τ‖+ 2UδBLJ |A|Lπ

t∑

k=t−τ

‖θk − θt−τ‖+ 4UδBLJmρτ−1

≤ (2UδBLJ′ + 3LJLh)

t∑

k=t−τ+1

E‖θk − θk−1‖+ 2UδBLJ |A|Lπ

t∑

k=t−τ+1

k∑

j=t−τ+1

E‖θj − θj−1‖

+ 4UδBLJmρτ−1

≤ (2UδBLJ′ + 3LJLh)

t∑

k=t−τ+1

E‖θk − θk−1‖+ 2UδBLJ |A|Lπτ

t∑

j=t−τ+1

E‖θj − θj−1‖

+ 4UδBLJmρτ−1

≤D1(τ + 1)

t∑

k=t−τ+1

E‖θk − θk−1‖+D2mρτ−1,

where D1 = max{UδBLJ′ + 3LJLh, 2UδBLJ |A|Lπ} and D2 = 4UδBLJ . Thus we conclude the proof.
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E IID Sampling Analysis

Algorithm 2 Single-timescale Actor-Critic (i.i.d. sampling)

1: Input initial actor parameter θ0, initial critic parameter ω0, initial reward estimator η0, stepsize αt for actor, βt

for critic and γt for reward estimator.
2: for t = 0, 1, 2, · · · , T − 1 do
3: Sample st ∼ µθt

4: Take the action at ∼ πθt(·|st)
5: Observe next state s′t ∼ P(·|st, at) and the reward rt = r(st, at)
6: δt = rt − ηt + φ(s′t)

⊤ωt − φ(st)
⊤ωt

7: ηt+1 = ηt + γt(rt − ηt)
8: ωt+1 = ΠUω

(ωt + βtδtφ(st))
9: θt+1 = θt + αtδt∇θ log πθt(at|st)

10: end for

Note that under i.i.d. sampling in Algorithm 2, we denote by st the samples from the stationary distribution and s′t the
subsequent state following transition kernel s′t ∼ P(·|st, at). Correspondingly, we redefine the observation tuple as
Ot = (st, at, s

′
t) (in contrast to Ot = (st, at, st+1) in the Markovian sampling case). This modification implies the

decoupling of Ot and Ot+1 since st+1 in tuple Ot+1 is a new state sampled from the stationary distribution rather than
inherited from Ot. This intuitively elucidates the vanishment of Markovian noise under i.i.d. sampling.

Lemma E.1. Under i.i.d sampling, we have

E[Φ(Ot, ηt, θt)] = 0,

E[Ψ(Ot, ωt, θt)] = 0,

E[Θ(Ot, O
′
t, θt)] = 0.

Proof. Note that the expectation is taken over all the random variables. We use the notation Ot to denote the tuple
(st, at, s

′
t) and v0:t to denote the sequence (st, at, s

′
t), (st, at, s

′
t), · · · , (st, at, s′t). By definition in (17), it can be

shown that

E[Φ(Ot, ηt, θt)] = Ev0:t [Φ(Ot, ηt, θt)]

= Ev0:t−1
Ev0:t [(ηt − J(θt))(rt − J(Kt))|v0:t−1],

where is second equality is due to law of total expectation. Once we know v0:t−1, ηt and J(θt) is not a random variable
any more. It holds that

E[Φ(Ot, ηt, θt)] = Ev0:t−1
Ev0:t [(ηt − J(θt))(rt − J(Kt))|v0:t−1]

= Ev0:t−1
(ηt − J(θt))Ev0:t [(rt − J(Kt))|v0:t−1]

= Ev0:t−1
(ηt − J(θt))EOt

[(rt − J(Kt))|v0:t−1]

= 0,

where the last equation is due to EOt
[(rt − J(Kt))|v0:t−1] = 0 under i.i.d. sampling.

By the similar argument, we have

E[Ψ(Ot, ηt, θt)] = Ev0:t [〈ωt − ω∗
t , g(O,ω, θ)− ḡ(ωt, θt)〉]

= Ev0:t−1
Ev0:t [〈ωt − ω∗

t , g(Ot, ωt, θt)− ḡ(ωt, θt)〉|v0:t−1]

= Ev0:t−1
〈ωt − ω∗

t ,Ev0:t [g(Ot, ωt, θt)− ḡ(ωt, θt)〉|v0:t−1]

= Ev0:t−1
〈ωt − ω∗

t ,EOt
[g(Ot, ωt, θt)− ḡ(ωt, θt)〉|v0:t−1]

= 0,

where we use the fact that EOt
[g(Ot, ωt, θt)− ḡ(ωt, θt)〉|v0:t−1] = 0.
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Similarly, we have

E[Θ(Ot, O
′
t, θt)] = Ev0:t [〈∇J(θt),EO′

t
[h(O′

t, θt)]− h(Ot, θt)〉]
= Ev0:t−1

Ev0:t [〈∇J(θt),EO′

t
[h(O′

t, θt)]− h(Ot, θt)〉|v0:t−1]

= Ev0:t−1
〈∇J(θt),Ev0:t [EO′

t
[h(O′

t, θt)]− h(Ot, θt)〉|v0:t−1]

= Ev0:t−1
〈∇J(θt),EOt

[EO′

t
[h(O′

t, θt)]− h(Ot, θt)〉|v0:t−1]

= 0,

where we use fact that Ot = O′
t under i.i.d. sampling.

Proof of Theorem 3.5.

Proof. The proof follows similarly to the Markovian sampling case. Specifically, all the Markovian noises (see the
definitions in (17)) present in the former analysis reduce to zero after taking expectations. The detailed results and
proof are presented in Lemma E.1. Then, replacing Lemma C.1, Lemma C.3, and Lemma C.5 with Lemma E.1, we

will get the desired O(T− 1
2 ) convergence rate and thus an O(ǫ−2) sample complexity accordingly.
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