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Figure 1. We propose ZONE, a zero-shot instruction-guided local editing approach. Our key idea is to edit and locate precise editing
regions in an image with intuitive textual instructions. We demonstrate a multi-turn editing example in (a) and compare the difference
maps between the edited image and the original image in (b) to highlight our method’s ability for local editing.

Abstract

Recent advances in vision-language models like Stable
Diffusion have shown remarkable power in creative image
synthesis and editing. However, most existing text-to-image
editing methods encounter two obstacles: First, the text
prompt needs to be carefully crafted to achieve good results,
which is not intuitive or user-friendly. Second, they are in-
sensitive to local edits and can irreversibly affect non-edited
regions, leaving obvious editing traces. To tackle these
problems, we propose a Zero-shot instructiON-guided lo-

*These authors contributed equally.
†Corresponding Author: bczhang@buaa.edu.cn.

cal image Editing approach, termed ZONE. We first convert
the editing intent from the user-provided instruction (e.g.,
“make his tie blue”) into specific image editing regions
through InstructPix2Pix. We then propose a Region-IoU
scheme for precise image layer extraction from an off-the-
shelf segment model. We further develop an edge smoother
based on FFT for seamless blending between the layer and
the image.Our method allows for arbitrary manipulation of
a specific region with a single instruction while preserv-
ing the rest. Extensive experiments demonstrate that our
ZONE achieves remarkable local editing results and user-
friendliness, outperforming state-of-the-art methods.
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1. Introduction

Large-scale vision-language models, such as Stable Diffu-
sion [44], DALL·E 2 [43], and Imagen [47], have revolu-
tionized text-guided image editing by bridging the gap be-
tween natural language and image content. Trained on vast
visual and textual data, these methods harness generative
power to manipulate appearance and style in natural im-
ages, offering a wide array of possibilities for enhancing
and manipulating images in domains such as photography,
advertising, e-commerce, and social media. These advance-
ments have opened up new possibilities for text-guided im-
age editing, making it increasingly important in various ap-
plications.

State-of-the-art (SOTA) image generative techniques
[38, 43, 44, 55] predominantly concentrate on stylization,
where the desired appearance is determined by a reference
image or textual description, often leading to global image
alterations [25, 30, 49]. However, these methods often lack
straightforward local editing capabilities, and the precise
localization of these edits typically needs additional input
guidance, such as segmentation masks [1, 14, 34], making
text-driven editing cumbersome and potentially limiting its
scope. Recent description-guided works1 like Prompt-to-
Prompt [15], DiffEdit [8], and Text2LIVE [3] make note-
worthy contributions to mask-free local edits, but they ei-
ther require complex textual descriptions (e.g., Prompt-
to-Prompt requires word-to-word alignment between the
source image caption and the edited image caption, and
DiffEdit uses query and reference prompts) or need to spec-
ify the edited object (e.g., Text2LIVE asks for multiple
prompts), which are not user friendly. Instruction-guided
editing methods2 [5, 11, 59, 62] present more elegant char-
acteristics in this regard. They eliminate the need for image-
anchored descriptions, requiring only descriptions of the de-
sired edits (e.g., “make it snowy”), which facilitates con-
cise and intuitive expression. However, these methods suf-
fer from the over-edit problem, potentially distorting high-
frequency details in non-edited regions (see Fig. 1 (b)).

To tackle these problems, we propose ZONE, a Zero-shot
instructiON-guided local image Editing approach. ZONE
provides a more flexible and creative way to manipulate real
images with layers.

Specifically, we leverage the pretrained instruction-
guided model, InstructPix2Pix (IP2P) [5], for image edit-
ing. By exploring the attention mechanism of IP2P, we un-
cover the implicit associations between the editing locations
and user-provided instructions in instruction-guided mod-
els. This allows us to identify the locations of the edited
objects in instructions without the need for extra specifica-
tion (e.g., Stable Diffusion-based methods have to specify

1In this paper, we call them description-guided diffusion models.
2In this paper, we call them instruction-guided diffusion models.

the tokens of the objects to edit). We further enhance this
capability by proposing a Region-IoU scheme in conjunc-
tion with SAM [29], ensuring the mask refinement of the
edited image layer. Our ZONE allows arbitrary image edit-
ing actions like “add”, “remove”, and “change”, all accom-
plished with intuitive instructions. Additionally, ZONE sup-
ports multi-turn local editing without affecting non-edited
regions, empowering high-fidelity local editing without any
training or fine-tuning. Comprehensive experiments and
user studies demonstrate that ZONE achieves remarkable re-
sults and user-friendliness in local image editing, outper-
forming existing SOTA methods.

To summarize, we make the following key contributions:

• We propose ZONE, a zero-shot image local editing
method that enables users to edit localized regions of both
real and synthetic images with simple instructions. ZONE
preserves non-edited regions without loss and allows ar-
bitrary manipulation of edited image layers.

• We reveal and exploit the different attention mechanisms
between IP2P and Stable Diffusion when processing user
instructions for image editing, with intuitive visual com-
parisons.

• We present a novel Region-IoU scheme and incorporate
it with SAM for effective edited region refinement, and
introduce a Fourier transform-based edge smoother to re-
duce the artifacts when compositing the image layers.

• Comprehensive experiments and user studies demon-
strate that ZONE achieves high-fidelity local editing re-
sults without any auxiliary prompts, outperforming SOTA
methods in photorealism and content preservation.

2. Related Work

2.1. Generative Models for Image Manipulation

Image manipulation is a fundamental process within the
realm of computer vision, involving altering images with
the aid of additional conditions like textual prompts, la-
bels, masks, or reference images. Two mainstream editing
methods include Generative Adversarial Networks (GANs)
and Diffusion Models (DMs). Typical image manipulation
tasks comprise image-to-image translation [7, 10, 20, 26,
46, 49, 54, 63], super-resolution [13, 21, 31, 56], inpainting
[19, 34, 41, 44], colorization [4, 33, 37, 53], and more. Al-
though GAN-based methods excel when dealing with care-
fully curated data, they struggle with extensive and hetero-
geneous datasets [22, 23, 36]. To enhance generative ex-
pressiveness, [17, 18, 44, 50, 51, 57, 58] utilize DMs to
achieve high-quality generation over diverse datasets. Re-
cent research has yielded promising generation outcomes
through the training or fine-tuning of large-scale text-to-
image models [5, 24, 35, 38, 43, 47, 55], as well as by
harnessing CLIP [42] embeddings to guide image manip-
ulation using textual prompts [9, 25, 30]. Some prior works
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[1, 2, 15, 40, 52] also demonstrate the zero-shot editing
capability of pretrained DMs. Similarly, our method ex-
tensively exploits a pretrained DM’s generative capability
to facilitate diverse and stylized image editing. However,
we uniquely explore the implicit relationship between the
DM’s editing regions during generation and the whole user
instructions, enabling fine-grained layer-specific position-
ing.

2.2. Localized Image Editing

Several recent works have made attempts at localized im-
age editing. Blend Diffusion [1] proposes a mask-guided
method by blending edited regions with the other parts of
the image at different noise levels along the diffusion pro-
cess. Text2LIVE [3] introduces an RGBA layer generation
approach with a CLIP-supervised generator for perform-
ing edits of objects in real images and videos. Prompt-
to-Prompt [15] controls the spatial layouts of the image
corresponding to the words in the prompt through cross-
attention modification, enabling local edits by modifying
textual prompts. Pix2Pix-Zero [40] preserves the structure
of the original image with cross-attention guidance and ap-
plies an edit-direction embedding to make changes to local-
ized objects. Instruction-based editing methods like IP2P
[5] and MagicBrush [59] are trained or finetuned on triplet
datasets to realize intuitive high-quality image editing based
on user-provided instructions. PAIR-diffusion [14] allows
editing the structure and appearance of each masked part in
the original image independently. While these methods pro-
duce impressive results within their specific applications,
they compromise on local image editing: instruction-guided
methods [5, 59] and attention-based modifications [15, 40]
introduce artifacts to non-edited regions, mask-based meth-
ods [1, 14] add complexity to user interactions, and CLIP-
based methods [3, 40] sacrifice the flexibility of natural lan-
guage editing. In contrast, our ZONE requires only a single
instruction to achieve high-fidelity local image editing with
an image layer.

2.3. Instruction-Guided Editing

Despite the significant progress of text-to-image models,
most require detailed textual descriptions [38, 43–45, 47]
to convey the desired image content, often falling short
of user expectations for image editing. In contrast, direct
instruction-guided modifications of target regions/attributes
offer a more intuitive and convenient approach, such as
“make the girl smile” and “give him a ball.” Recent ad-
vancements in instruction-guided editing and generation
[5, 11, 39, 59, 61, 62] have made notable progress. For in-
stance, IP2P [5] employs GPT-3 [6] and Prompt-to-Prompt
[15] to synthesize an instruction-editing dataset, utilizes a
pretrained Stable Diffusion model [44] for weight initializa-
tion, and trains a diffusion model specialized in instruction-

guided editing. MagicBrush [59] fine-tunes IP2P using a
real image dataset, thereby demonstrating a superior per-
formance in instruction-guided editing. In this paper, we
aim to leverage the instruction-editing capability of these
pretrained instruction-guided diffusion models to eliminate
the need for additional masks in previous local editing ap-
proaches [1, 2, 38], enabling flexible and high-fidelity local
editing based on a single user-provided instruction.

3. Preliminaries
Diffusion Models. Diffusion models [17, 48, 50] are
probabilistic generative models founded on two comple-
mentary stochastic processes: diffusion and denoising. The
diffusion process progressively adds different amounts of
Gaussian noise to a clean image x0 towards Gaussian dis-
tribution xT ∼ N (0, I) in T timesteps: xt =

√
αtx0 +√

1− αtϵ, where αt defines the level of noise, and ϵ ∼
N (0, I).

In the denoising process, a neural network ϵθ is de-
signed to predict the noise ϵ for xt to get a “cleaner”
image gradually. This process is achieved by minimiz-
ing the denoising objective: L = Ex0,t,ϵ ∥ϵ− ϵθ(xt, t)∥22.
Rombach et al. [44] introduce a latent diffusion model
(LDM), which speeds up both processes by reducing images
into a lower-dimensional latent space utilizing a variational
auto-encoder [28]. This advancement has underpinned the
achievements of Stable Diffusion, serving as the fundamen-
tal model for many diffusion-based works.

InstructPix2Pix. InstructPix2Pix [5] (IP2P) is a pioneer-
ing conditional diffusion model that edits images from user-
provided instructions. Specifically, IP2P constructs an in-
struction dataset to fine-tune the pretrained Stable Diffu-
sion. Given a target image x, an image condition cI , and a
textual instruction condition cT , IP2P projects x to the latent
z = E(x) with a pretrained encoder E , and then fine-tunes
Stable Diffusion by minimizing the following objective:

L =

EE(x),E(cI),cT ,ϵ∼N (0,1),t [∥ϵ− ϵθ (zt, t, E (cI) , cT )) ∥22],
(1)

where the denoising network ϵθ accepts two input condi-
tions and predicts the noise ϵ. IP2P also finds it beneficial to
perform classifier-free guidance [16] concerning both con-
ditions, thus controlling the strength of edit by image guid-
ance scale sI and instruction guidance scale sT :

ϵ̃θ (zt, cI , cT ) =ϵθ (zt,∅,∅)

+ sI · (ϵθ (zt, cI ,∅)− ϵθ (zt,∅,∅))

+ sT · (ϵθ (zt, cI , cT )− ϵθ (zt, cI ,∅)) .
(2)

At inference time, IP2P can modify an image with a user-
provided instruction and trade-off the generated sample ac-
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Figure 2. Overview of ZONE. (a) Three modules in ZONE. (b) Distinct difference between description-guided and instruction-guided
diffusion models on cross-attention. The former usually follows a token-aware format, while the latter is edit-aware. (c) Implementation
details of the modules shown in (a).

cording to the strengths of the guidance image and the edit
instruction through sI and sT .

4. Method

Overview of ZONE. We aim to make localized edits on an
image with simple instructions. As depicted in Fig. 1 (a),
such edits include performing three primary actions: (i)
“add”: add an object to the image without specifying lo-
cation with user-provided masks; (ii) “remove”: remove the
object in the scene; (iii) “change”: change the style (i.e.,
texture) of an existing object or replace the object with an-
other object. Additionally, our method allows high-fidelity
multi-turn edits with a series of instructions.

As outlined in Fig. 2 (a), our approach consists of the
following steps: First, we train an action classifier for steer-
ing different editing requirements and concurrently gener-
ate and position the editing region using a fused IP2P, as
detailed in Section 4.2 and Fig. 2 (c). Second, we devise a
mask refinement module for an edited image layer in Sec-
tion 4.3. Finally, in Section 4.4, we propose an FFT-based
edge smoother for seamless blending of the edited image
layer with the original image.

4.1. Problem Statement

Given an RGB image IG ∈ R3×H×W and a textual instruc-
tion TI , we aim to locate and edit image regions following
TI and maintain the original non-edited regions. Inspired by
Text2LIVE [3], we extract an edited layer IL with color and
opacity that are composited over IG. As opposed to previ-
ous works [1, 3, 15, 40], we neither rely on any user-defined
mask nor need non-intuitive prompt engineering, realizing
precise local editing and seamless layer blending.

4.2. Instruction-Guided Localization

Many local editing methods require users to explicitly spec-
ify the object they want to edit with a prompt or a mask
[1, 3, 8, 40]. This is not intuitive and often requires a certain
learning cost. Our approach locates and edits the implicitly
designated object from the user’s instruction. For example,
a user-provided instruction like “make her old” can implic-
itly convey the user’s editing intent to modify the woman in
the scene (locate) by making her appear older (edit).

As shown in Fig. 2 (b), our key finding is that the oper-
ational mechanisms of instruction-guided and description-
guided diffusion models on cross-attention exhibit a distinct
difference. Specifically, we empirically demonstrate that:
(i) a description-guided model displays a token-aware char-
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Figure 3. Token-wise cross-attention map difference. We aver-
age the cross-attention maps among all timesteps for each sample.
IP2P shows consistency in all tokens, while Stable Diffusion (SD)
demonstrates a one-to-one correspondence with tokens.

acteristic on its cross-attention maps, associating each in-
put text token with a corresponding spatial structure; (ii) an
instruction-guided model’s cross-attention maps share sim-
ilar spatial features, demonstrating an edit-aware character-
istic, being insensitive to single tokens but responsive to the
overall editing intent.

Given a noisy latent zt and a textual embedding cT , the
denoising UNet ϵθ predicts the noise ϵ at each timestep
t. The generation is conditioned on the textual prompt TI
by computing cross-attention between the textual embed-
ding cT and the spatial features ϕ(zt), and updates ϕ(zt) as
ϕ̂(zt):

M = Softmax(
QKT

√
d

), ϕ̂(zt) = M · V, (3)

where the query Q = WQϕ(zt), key K = WKcT , and
value V = WV cT are obtained with linear projections WQ,

WK , and WV . M ∈ RH
′
×W

′
×L contains L cross-attention

maps that are correlated to the similarity between Q and K.
Typically H

′
and W

′
are 1/32 of the original image size

H and W in Stable Diffusion. For the description-guided
Stable Diffusion model, let M l be the attention map of the
l-th token, l ∈ {1, 2, . . . , L}. For the instruction-guided
IP2P, M l shares a uniform characteristic across all tokens,
concentrated directly at the edited location without token
specification, as visualized in Fig. 3.

Based on this finding, we devise a simple yet effec-
tive localization module that semantically locates the edited
region with instruction TI . Specifically, we first collect
the attention maps of the denoising model of IP2P from
all timesteps of the denoising process. Then, we aver-
age and resize the maps to obtain averaged attention maps
MA ∈ RH×W×L. Note that the L tokens include the “start-
of-text” and “end-of-text” tokens, whose corresponding at-
tention maps are M1 and ML, respectively. As depicted in

Fig. 3, the attention weights (i.e., the brightness of the pix-
els) of these maps tend to decrease along the tokens, so we
subtract the last token’s cross-attention map from the first
token’s and binarize the result with a fixed threshold T :

Mb(m,n) =

{
1, if M1

A(m,n)−ML
A(m,n) < T,

0, others,
(4)

where T is empirically set to 128. This yields a rough,
noise-filtered edited region mask Mb most related to TI
(see Fig. 2 (a)).

Moreover, we find that IP2P performs not as well as
MagicBrush in the “remove” editing but preserves better
object identity in terms of “add” and “change”. Therefore,
we design a fused IP2P module with a trainable action clas-
sifier AI . As illustrated in Fig. 2 (c), we lock the weights
of both IP2P and MagicBrush and use a pretrained action
classifier AI to steer the denoising process based on TI :

zt−1 = (z∗t−1 + β · z′t−1)/(1 + β), (5)

where z∗t−1 and z′t−1 are the denoised latents by IP2P and
MagicBrush, respectively. β is a hyperparameter to control
the guidance strength of MagicBrush on IP2P, empirically
set to 0.2 if AI(TI) is classified to “remove” and 0.01 for
other actions. This module generates a globally edited im-
age Isty according to TI . Isty serves as the canvas, from
which the edited region is cropped out to form a separate
image layer in the following steps.

4.3. Mask Refinement

The location mask Mb and Isty obtained in Section 4.2 are
insufficient for precise local editing, since Mb only indi-
cates the general location of the edited region, as illustrated
in Fig. 2 (a). An intuitive and effective mask refinement
method is to use an off-the-shelf segmentation model. We
leverage the Segment Anything Model (SAM) [29] to gen-
erate precise masks of the canvas Isty at various levels.
However, we do not use SAM’s preset point or box prompts
for segmentation selection, because these prompts could po-
tentially lead to misselection or omission of SAM’s seg-
mentation results due to IP2P’s over-edit problem (which is
also reflected in Mb, see Isty and Mb in Fig. 2 (a)), result-
ing in a final mask that does not accurately reflect TI ’s edit-
ing intention. Therefore, we propose a Region-IoU (rIoU)
scheme to obtain the accurate segmentation mask.

As depicted in Fig. 2 (c), by sending Isty to SAM, we
extract all the possible instance segments S = {Sj}Nj=1.
Note that S contains the segments from all levels of SAM’s
segmentation. We define rIoU R(j) as:

R(j) =
area(Sj ∩Mb)

area(Sj ∪Mb)
, j = 1, 2, . . . , N. (6)
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(a) w/ 𝑒

(b) w/o 𝑒

“Wear him a hat.”

Figure 4. Visualization and ablation. The first 4 columns show
the intermediate results related to the edge smoother. The last col-
umn compares the final edited results with and without the edge
smoother.

If k = argmax
j=1,2,...,N

{R(j)}, then we obtain the refined mask

Mf = Sk. One example is shown in Fig. 2 (a) or (c).

4.4. Layer Blending

After the mask refinement, we obtain an edited image layer
I ′
L = Isty ⊙ Mf , which retains the color information of

Isty within the region where Mf = 1, with the rest being
transparent. A naı̈ve way to get the final edited result IC is
to stitch I ′

L and the original image IG at pixel-level. This
fundamentally tackles the over-edit problem encountered in
instruction-guided methods for local editing. Nevertheless,
directly pasting I ′

L back to IG may result in noticeable ar-
tifacts, such as jagged edges and incomplete coverage of
the edited region in the original image, as indicated by the
yellow arrows in Fig. 4 (b).

We tackle this problem by designing a novel edge
smoother with Fast Fourier Transform (FFT). Given the
original image IG, the canvas Isty , and the refined lo-
cation mask Mf , we first dilate Mf to Md to incorpo-
rate more edge information in Isty that may not be in-
cluded in I ′

L. Then we get the dilated edited image layer
IL,d = Isty ⊙ Md and the dilated original image layer
IG,d = IG⊙Md, as shown in the second column of Fig. 4.
The edge smoother e is defined by:

e(IL,d, IG,d) = g(f−1(H(f(IL,d))−H(f(IG,d)))), (7)

where g is a composition of binarization and morphological
closing and filling functions, f and f−1 represent FFT and
inverse FFT, respectively, and H is an ideal low-pass filter:

H(fs) =

{
fs(c), if ∥c− c0∥2 ≤ D0,

0, if ∥c− c0∥2 > D0,
(8)

where fs ∈ RH×W is the frequency spectrum of the image
transformed by f , c is the coordinate in fs, c0 is the cen-
ter coordinate of fs, and D0 is set empirically to 200 for a

512 × 512 image. We use the edge smoother e to get the
final mask M∗

f .
As shown in the second column of Fig. 4, we observe that

both IG,d and IL,d share similar low-frequency characteris-
tics on non-edited regions (e.g., background), but they hold
different low-frequency characteristics on the edited regions
(e.g., hat and the shadow below it). Therefore, we can ex-
clude the non-edited regions and retain the edited regions
by subtracting the low-frequency components between IL,d

and IG,d in the frequency domain: ds = H(f(IL,d)) −
H(f(IG,d)) and invert it back to the image domain to get
the difference mask Mdm = f−1(ds). The final mask
M∗

f is then obtained by M∗
f = g(Mdm) = e(IL,d, IG,d).

Finally, we get the final edited image layer IL by IL =
Isty ⊙ M∗

f , and the final edited result IC is acquired by
compositing IG and IL. The intuitive visualization of these
intermediate results are shown in Fig. 4.

The implementation details and more discussions can be
found in the supplementary material.

5. Experiments

5.1. Experimental Setup

Baselines. We conduct comprehensive experiments for
the local editing task by comparing ZONE with five state-
of-the-art image editing methods that are capable of local
editing: Text2LIVE [3], DiffEdit [8], IP2P [5], Pix2Pix-Zero
[40], and MagicBrush [59]. The implementation of these
methods can be found in the supplementary material.

Datasets. We randomly select and annotate 100 samples
for evaluation, including 60 real images from the Internet
and 40 synthetic images. To ensure the representativeness
of the evaluation, we consider the diversity of scenes and
objects in the sample selection. In particular, we divide the
test set into three categories: 32 images for “add”, 54 for
“change”, and 14 for “remove” actions. All these 100 im-
ages are listed in the supplementary material.

Evaluation Metrics. Following [5, 59], we perform qual-
itative and quantitative comparisons using a variety of eval-
uation metrics. Learned Perceptual Image Patch Similarity
(LPIPS) [60] is used to quantify the perceptual similarity
between the original and edited image. CLIP text-image
similarity (CLIP-T) [12] is employed to assess the align-
ment between the edited image and its corresponding cap-
tion, and CLIP image similarity (CLIP-I) is used to evaluate
the layout similarity and semantic correlation between the
edited image and the original image, serving as a reliable
indicator of the edited image’s quality. We also use L1 and
L2 distances for pixel-level difference comparison.
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Type Methods L1 ↓ L2 ↓ LPIPS ↓ CLIP-I ↑ CLIP-T ↑

Description-guided
DiffEdit [8] 0.0426 0.0099 0.1695 0.8947 0.2815

Text2LIVE [3] 0.0511 0.0075 0.2176 0.9075 0.3062
Pix2Pix-Zero [40] 0.1198 0.0342 0.4375 0.7679 0.2701

Instruction-guided
InstructPix2Pix [5] 0.0945 0.0274 0.2816 0.9089 0.2907
MagicBrush [59] 0.0919 0.0378 0.2903 0.8959 0.2939
ZONE (Ours) 0.0146 0.0061 0.0441 0.9688 0.2969

Table 1. Quantitative evaluation. We use L1 and L2 to gauge pixel-level structural similarity, LPIPS and CLIP-I to evaluate image quality,
and CLIP-T to assess text-image semantic similarity. The best and the second best results are marked in bold and underline, respectively.
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Figure 5. Qualitative comparison. We compare the editing efficacy of our ZONE with existing SOTA methods. The instructions (or
instructions that are equivalent to the descriptions required by some baselines) used for editing are written below each row of the images.
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Remove Add ChangeAction Legend

Better

Figure 6. Stability analysis. We categorize the test set into three
actions (“Remove”, “Add”, and “Change”) and calculate their re-
spective CLIP-I and CLIP-T values. Our method achieves the best
quality-stability trade-off for all actions.

Input Image Ours InstructPix2Pix Text2LIVE

” Make the basket full of red apples”

Figure 7. Detailed comparison. We show a zoomed-in sample
where ZONE effectively resolves the over-edit problem.

5.2. Comparisons

Quantitative Evaluation. As shown in Table 1, we mea-
sure the models with the five metrics. The quantitative re-
sults indicate the following: (i) Our method significantly
outperforms our counterparts on metrics related to im-
age structure and quality, implying the efficacy of ZONE’s
preservation of the non-edited regions. (ii) Text2LIVE
performs best on CLIP-T, but the qualitative comparison
in Fig. 5 does not support this result. We surmise that
Text2LIVE performs better on this metric potentially due
to its direct supervision by CLIP.

To quantify the stability of the edits, we divide the test set
into three action groups: “change”, “add”, and “remove”.
We then test the CLIP-I and CLIP-T metrics for each model
and plot the CLIP curves in Fig. 6, where the performances
of the same method on these actions are connected with
lines of the same color. Our interpretation is as follows:
first, the shorter the projection of the line on the axis, the
higher the semantic stability (i.e., maintaining similar per-
formances under different editing instructions) of the image
editing; second, if the curve is closer to the upper right cor-

Methods SR (%) UPR (%)
DiffEdit [8] 27.0 ± 5.6 8.8

Text2LIVE [3] 32.3 ± 4.3 17.3
Pix2Pix-Zero [40] 18.3 ± 4.3 10.4
InstructPix2Pix [5] 60.6 ± 4.9 18.9
MagicBrush [59] 50.0 ± 5.1 18.0
ZONE (Ours) 69.0 ± 3.7 26.6

Table 2. Human evaluation. Our ZONE obtains the highest suc-
cess rate (SR) and user preference rate (UPR).

ner, it indicates that the method’s editing quality is more
superior. Our method achieves the best trade-off between
quality and stability, demonstrating strong editing stability
and representativeness.

Qualitative Comparsion. In Fig. 5, we illustrate the edit-
ing results for the baselines and our method. We select six
sets of images (including synthetic and real images) and
group them based on actions. Our ZONE shows precise lo-
cal editing capability while preserving the remaining pixels,
this is especially important when there are perceptually im-
portant high-frequency details, such as faces, textures, or
texts. A zoomed-in comparison is shown in Fig. 7. Both
InstructPix2Pix and Text2LIVE introduce distortions to the
non-edited areas during the editing process. For instance,
InstructPix2Pix distorts the nearby clock and paints the or-
ange outside of the basket red. In comparison, Text2LIVE
maintains a better structure but generates a “barrel” of ap-
ples and introduces an obvious foggy effect to the image.
Our method, however, can clearly distinguish between the
edited region and the non-edited regions, demonstrating the
best local editing efficacy.

5.3. Human Evaluation

Due to the lack of an effective metric to measure editing ef-
fects (mainly due to the absence of ground truth images af-
ter editing), the metrics mentioned in Section 5.1 alone are
not sufficient to demonstrate the superiority of our method
over existing ones. To further validate the editing effects
of ZONE, in addition to the visual comparison in Fig. 5, we
also conduct a human evaluation to calculate the success
rate (SR) and user preference rate (UPR) of the edited im-
ages with the editing instructions. Table 2 shows a consis-
tent preference for our method by users, as well as a domi-
nant success rate over other methods.

Please refer to our supplementary material for more vi-
sualizations and details of this user study.

6. Conclusion
We present ZONE, a zero-shot instruction-guided local im-
age editing approach, which leverages the localization ca-
pability within the pre-trained instruction-guided diffusion

8



models. Our approach innovatively utilizes the editing in-
tent regions inherent in the instructions, rather than focus-
ing on individual tokens, eliminating the need for specific
guidance. By integrating the Region-IoU scheme and FFT-
based edge smoother with a pretrained segmentation model,
ZONE effectively realizes precise local editing. Comprehen-
sive experiments and user studies further demonstrate the
superiority of ZONE over SOTA methods.
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Appendix
In this supplementary, we first give more visualization results, then detail the datasets and the implementation, and finally
state the social impact and the limitations.

A. More Visualizations
In this section, we first present more visualizations of the samples from the test set under two comparison settings: (i)
single-turn editing, and (ii) multi-turn editing. To make the comparison more representative, we compare our ZONE with
three state-of-the-art (SOTA) text-to-image approaches, Text2LIVE (T2L) [3], InstructPix2Pix (IP2P) [5], and MagicBrush
(MB) [59]. Then we conduct an ablation study to show the efficacy of our fused IP2P module, through cross-attention map
visualization.

A.1. Single-Turn Editing Examples

We show more single-turn editing examples to further validate ZONE’s remarkable ability of local image editing. In particular,
we compare it with the other methods for local editing using 9 images and their corresponding instructions (or prompts
equivalent to the instructions). As evident in Fig. 8, the results generated by ZONE surpass those of the other methods,
demonstrating its impressive prowess in local editing.

A.2. Multi-Turn Editing Examples

We use our ZONE to edit 2 images in a multi-turn style and compare the editing results with those obtained from the other
methods. Specifically, each method is employed to edit each image three times, with different instructions. As illustrated in
Fig. 9, our ZONE can achieve high-quality local edits under multiple instructions and preserve the original image’s non-edited
regions. In contrast, the results generated by the other methods exhibit noticeable distortions from the original images after
multiple rounds of editing, which is not preferred in practical applications.

A.3. Cross-Attention Map Visualization

As shown in Fig. 10, the first row demonstrates the editing results, and the second row illustrates the averaged cross-attention
maps. From the cross-attention maps, we can see that by fusing the denoised latents of the two methods as described in
Equation (5) of the main paper, our approach achieves a better localization capability under the “Remove” editing intent
compared to the two methods.

B. Implementation Details
We conduct all our experiments based on open-source projects and models. We adopt an NVIDIA V100-SXM2-32GB GPU
for the action classifier training and for ZONE testing. The action classifier AI leverages the instruction embeddings extracted
by the text encoder of InstructPix2Pix (IP2P) [5] as its input, and outputs the probability logits for each action. To train the
action classifier, we first use GPT-3.5 to generate samples for training and testing, and then we lock the weights of the text
encoder of IP2P and optimize AI using Adam [27] with a learning rate of 0.1 for 30 epochs. The action classifier achieves
100% top-1 classification accuracy on the test set.

We set 20 sampling steps for the fused IP2P and average the cross-attention layers of the first three UNet upsampling
blocks and the second to the fourth downsampling blocks to get the fused cross-attention maps among all the denoising steps.

The action classifier AI is a simple Multi-Layer Perceptron (MLP), comprising two linear layers with an intermediate
ReLU activation function. The input dimension of the first linear layer and the length of the embedding outputted from the
CLIP text encoder [42] are the same (equal to 768), and the output dimension at this layer is 128. The intermediate ReLU
function introduces non-linearity to the output, and the second linear layer takes the 128-dimensional output from the ReLU
function and produces a 3-dimensional output to classify the given instruction.

C. Experimental Details
C.1. Baselines

To ensure consistency and convenience in method comparison, we uniformly adopt the implementation from the diffusers
project 3 for IP2P [5], MagicBrush [59], DiffEdit [8], and Pix2Pix-Zero [40], and use their default parameters to generate

3https://github.com/huggingface/diffusers
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table
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Figure 8. Single-turn editing examples. IP2P: InstructPix2Pix [5]; T2L: Text2LIVE [3]; MB: MagicBrush [59].
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STOP 
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“Delete
the car”

“Add a 
horse 
walking 
on the 
road”

Figure 9. Multi-turn editing examples. IP2P: InstructPix2Pix [5]; T2L: Text2LIVE [3]; MB: MagicBrush [59]. Best viewed zoomed in.

“Remove the 
airplane.”

Input Image Ours IP2P MB Input Image Ours IP2P MB

“Delete the 
dog.”

Figure 10. Cross-attention map comparisons. The darker parts in each cross-attention map (the second row) denote the edit regions.

results and calculate the metrics. For Text2LIVE [3], we conduct experiments using its official code repository. To eliminate
the potential discrepancies in generative capabilities arising from different versions of Stable Diffusion used across these
methods, we employ Stable Diffusion 1.5 4 as the base model. Notably, since half of these methods do not support instruc-
tions as textual inputs, we design text prompts or additional assistance equivalent to instructions during our comparative
experiments to achieve a relatively fair comparison.

C.2. Datasets

In this section, we provide the generation details of the dataset for action classification and the test set that we collect to
evaluate the metrics for our ZONE and other editing methods.

Dataset for action classification. We employ GPT-3.5 5 to generate the dataset used for training the action classifier. Our
primary objective is to generate sentences that closely resemble user instructions, with the editing focus on common items
found in real images. To achieve this, we choose categories from the COCO dataset to serve as the vocabulary for sentence
generation. The following prompt is designed for generating training and testing data:

4https://huggingface.co/runwayml/stable-diffusion-v1-5
5https://chat.openai.com
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“Now you are a dataset bot, who will generate a training dataset for a three-fold (change, add, and remove)
sentence classification task. Specifically, you should generate a sentence along with its label. In this task, we
aim to generate a dataset for “change”, “add”, and “remove” (labeled 0, 1, 2): For example: “turn the cat into a
dog, 0”, “give the dog a hat, 1”, “get rid of the person on the left, 2”. You should generate 450 sentence-label
pairs if I give the instruction “train”, and 150 pairs when I give the instruction “test”. I expect your response to be
straight-forward, each sentence should be within 30 words, and you should freely select the words in the following
list: [ ‘person’, ‘bicycle’, ‘car’, ‘motorcycle’, ‘airplane’, ‘bus’, ‘train’, ‘truck’, ‘boat’, ‘traffic light’, ‘fire hydrant’,
‘stop sign’, ‘parking meter’, ‘bench’, ‘bird’, ‘cat’, ‘dog’, ‘horse’, ‘sheep’, ‘cow’, ‘elephant’, ‘bear’, ‘zebra’, ‘giraffe’,
‘backpack’, ‘umbrella’, ‘handbag’, ‘tie’, ‘suitcase’, ‘frisbee’, ‘skis’, ‘snowboard’, ‘sports ball’, ‘kite’, ‘baseball bat’,
‘baseball glove’, ‘skateboard’, ‘surfboard’, ‘tennis racket’, ‘bottle’, ‘wine glass’, ‘cup’, ‘fork’, ‘knife’, ‘spoon’, ‘bowl’,
‘banana’, ‘apple’, ‘sandwich’, ‘orange’, ‘broccoli’, ‘carrot’, ‘hot dog’, ‘pizza’, ‘donut’, ‘cake’, ‘chair’, ‘couch’, ‘potted
plant’, ‘bed’, ‘dining table’, ‘toilet’, ‘tv’, ‘laptop’, ‘mouse’, ‘remote’, ‘keyboard’, ‘cell phone’, ‘microwave’, ‘oven’,
‘toaster’, ‘sink’, ‘refrigerator’, ‘book’, ‘clock’, ‘vase’, ‘scissors’, ‘teddy bear’, ‘hair drier’, ‘toothbrush’ ] and make sure
the sentence is short and clear, and the label is correct, and the dataset is balanced. Please just reply with the
sentence-label pairs, and wait for my instructions. Note that the generated sentence-label pairs should not repeat.”

The data generated by GPT-3.5 undergoes manual verification. The final training dataset includes 150 samples each for
the “add”, “remove”, and “change” actions, while the test dataset comprises 50 samples for each action. We show some
samples from the training dataset in Table 3.

Turn the bicycle into a motorcycle, 0
Make the apple a banana, 0

Swap the baseball glove for a tennis racket, 0
Replace the chair with a couch, 0

Put a frisbee next to the cat, 1
Attach a remote to the TV, 1

Include a toothbrush on the dining table, 1
Give the horse a suitcase, 1

Remove the horse, 2
Take away the umbrella, 2
Delete the traffic light, 2
Erase the microwave, 2

Table 3. Examples of the training dataset of the action classifier.

Test set for evaluation. We present the test set utilized in our evaluation in Fig. 11. Initially, we gather 60 images from the
Internet and create 40 synthetic images using Stable Diffusion 1.5 [44]. Subsequently, each image is cropped to a resolution
of 512× 512. Then we use BLIP [32] to caption each image and manually annotate the instructions, output captions, source
objects, and target objects. Three annotation examples are shown in Table 4.

Keys Example 1 Example 2 Example 3
action Change Remove Add

input caption A blue car in front of a forest A man in black with a tie A photo of Elon Musk
output caption A red car in front of a forest A man in black A photo of Elon Musk with glasses

instruction paint the car red get off his tie give him glasses
source object blue car a tie N/A
target object red car N/A glasses

Table 4. Three annotation examples. “N/A” indicates the absence of words.
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Figure 11. Images in the test set. We calculate the evaluation metrics and provide visualizations in the main paper with images in this set.

C.3. Evaluation Metrics

L1/L2 distance. The L1 and L2 distances serve as the metrics for evaluating structural and pixel-wise similarities between
two images. The L1 distance measures absolute differences in pixel values, while the L2 distance calculates squared differ-
ences. Both metrics play a critical role in assessing dissimilarity, with smaller distances indicating greater image similarity
in both pixel intensity and spatial structure.

LPIPS score. LPIPS (Learned Perceptual Image Patch Similarity) [60] is a metric designed for evaluating the perceptual
similarity between two images. It takes into account both pixel-level differences and high-level visual features, providing a
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comprehensive measure of how similar images appear to humans.

CLIP-based metrics. CLIP, or Contrastive Language-Image Pre-training, is a transformative model that excels in under-
standing the intricate relationships between text descriptions and images [42]. Through a pre-training process that employs
contrastive learning, CLIP learns a shared embedding space where images and text descriptions are represented as vectors.
This shared space is designed to bring semantically related content in close proximity. The model tokenizes images into
regions and text into tokens, leveraging a transformer architecture with cross-modal attention to establish connections be-
tween corresponding regions and tokens. Both the CLIP-I and CLIP-T metrics evaluate the input image/text in the shared
embedding space:
• CLIP image similarity (CLIP-I) is designed to evaluate the image quality in both semantics and structure. This metric is

computed by calculating the cosine similarity of the embedding vectors of the source image and the target image.
• CLIP text-image similarity (CLIP-T) is used to evaluate the alignment between the edited image and its corresponding

caption. More specifically, CLIP-T calculates the cosine similarity between the embedding vectors of the edited image and
its corresponding caption.

More evaluation details. We employ 512× 512 images as inputs for each method during evaluations. However, DiffEdit
[8] requires image inputs with a resolution of 768× 768 to function properly. So we first resize the test images to 768× 768
for DiffEdit to ensure its proper performance and resize the outputs back to 512× 512 to calculate the metrics.

C.4. Human Evaluation

Success rate. We invite five volunteers to annotate the success rates of the six methods on the test set. To simplify the
annotation process and avoid bias, we design a tool that can display the editing results of each method in a randomly shuffled
order and anonymous style (see Fig. 12). The volunteers are then asked to decide whether to accept or reject the edited
image based on the editing quality (i.e., preservation of the non-edited regions and the realism of the edited image) and text-
image alignment between the output caption and the edited image. Ultimately, the success rate of each method is obtained
by dividing the number of accepted results by the total number. To minimize annotation bias, we calculate the mean and
standard deviation of the success rates from the five volunteers and demonstrate the results in Table 2 of the main paper.

Figure 12. A screenshot of the annotation tool. The original image, the instruction, and three results randomly selected from the six
methods are displayed each time.

User preference rate. We conduct a user study, which includes 16 sets of randomly selected editing results. Each set
contains six results obtained by the six methods that we compare in the experiment, presented in a randomly shuffled order.
The users are asked to give a preference score according to the degree of agreement between each editing result and the
corresponding instruction, as well as the similarity to the original image, with the score from 1 to 10 and a higher score
indicating a higher preference. A total of 30 users participate in this test. The final results are calculated by dividing the total
score obtained for each method Si by the total score obtained for all methods:

UPR(i) = 100× Si/

6∑
i=1

Si. (9)
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D. Limitations
While our method can produce impressive local manipulations of images and address the over-edit issue of InstructPix2Pix, it
still has limitations. First, its editing capabilities are constrained by the instruction-guided diffusion models we employ, which
may lead to occasional ineffectiveness in editing. This issue can be addressed in the future with more powerful instruction-
guided diffusion models. Secondly, our method falls short of localization in complex scenes (e.g., multiple similar objects or
tiny objects), which is a challenging task that still needs to be explored. Lastly, the current set of editing actions is relatively
limited, more actions like “move”, “resize”, or “copy” will be considered in future work.

E. Social Impact
Our work introduces a novel method for image local editing, which edits a specific region in the original image with an
intuitive instruction. This method allows for precise local editing without affecting other areas of the image, resulting in a
realistic final composite image. Malicious groups may exploit this advantage to spread false information or cause misun-
derstanding. However, we believe that the harm caused by such improper usage can be mitigated with AI-generated content
watermarking algorithms or supervising regulations.
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