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On the tractability of SHAP explanations under Markovian distributions

Reda Marzouk 1 Colin de La Higuera 1

Abstract

Thanks to its solid theoretical foundation, the

SHAP framework is arguably one the most

widely utilized frameworks for local explainabil-

ity of ML models. Despite its popularity, its ex-

act computation is known to be very challeng-

ing, proven to be NP-Hard in various configura-

tions. Recent works have unveiled positive com-

plexity results regarding the computation of the

SHAP score for specific model families, encom-

passing decision trees, random forests, and some

classes of boolean circuits. Yet, all these posi-

tive results hinge on the assumption of feature

independence, often simplistic in real-world sce-

narios. In this article, we investigate the compu-

tational complexity of the SHAP score by relax-

ing this assumption and introducing a Markovian

perspective. We show that, under the Markovian

assumption, computing the SHAP score for the

class of Weighted automata, Disjoint DNFs and

Decision Trees can be performed in polynomial

time, offering a first positive complexity result

for the problem of SHAP score computation that

transcends the limitations of the feature indepen-

dence assumption.

1. Introduction

Since its introduction in the seminal paper

(Lundberg and Lee, 2017), the local explanatory (SHapley

Additive exPlanations) SHAP method gained increasing

popularity in the field of interpretable ML. Nevertheless,

one of its main limitations pertains to its computational

intractabilty: In general, computing the SHAP score is

NP-Hard (Bertossi et al., 2020; den Broeck et al., 2021).

A recent body of works showed promising positive results

regarding the tractability of computing the SHAP score

under particular configurations. In (Lundberg et al., 2020),

a polynomial-time algorithm to compute exactly the SHAP

score for the family of decision trees, commonly known as

1LS2N, Université de Nantes, France. Correspondence to:
Reda Marzouk <mohamed-reda.marzouk@univ-nantes.fr>.

TreeSHAP, has been proposed. A more rigorous proof for

the tractability of various families of boolean functions has

been provided in (den Broeck et al., 2021). (Arenas et al.,

2023) extended these positive complexity results to cover

the family of Decomposable Deterministic circuits which

includes the family of decision trees among other classes

of boolean circuits.

All these reported results in the literature are, however,

derived under the feature independence assumption. Al-

though practical for its simplicity, this assumption is often

irrealistic in real-case scenarios. A slight relaxation of this

assumption has been examined in (den Broeck et al., 2021)

through the lens of complexity theory by considering the

family of naı̈ve bayes models and empirical distributions.

Computing the SHAP score for the family of decision trees

under this relaxed assumption has been proven to be #P-

Hard in both these settings.

Between independent distributions and latent variable mod-

els, an intermediate class of distributions that hasn’t been

explored yet is the class of Markovian distributions. Marko-

vian distributions constitute an interesting class of dis-

tributions that incorporate a degree of feature correla-

tion often considered sufficient to model various stochas-

tic phenomena (Bassler, Gunaratne, and McCauley, 2006;

Kampen, 2007; Goutsias and Jenkinson, 2013).

Previous works examining the complexity of comput-

ing the SHAP score were mostly directed towards fam-

ilies of boolean functions. In this article, we shift

our focus to sequential models, in particular the fam-

ily of weighted automata (WAs). WAs offer a power-

ful formalism for modeling sequential tasks and encom-

pass a large family of classical models, including Deter-

ministic and Non deterministic finite automata, Hidden

Markov Models, and has been shown to be equivalent

to second-order linear RNNs (Rabusseau, Li, and Precup,

2019). They have been employed in various applications,

such as NLP (Knight and May, 2009), speech processing

(Pereira and Riley, 1996; Mohri, Pereira, and Riley, 2008)

and image processing (Culik and Kari, 1993).

Recently, a line of works proposed WAs as proxy inter-

pretation models for neural models (Okudono et al., 2020;

Eyraud and Ayache, 2021; Weiss, Goldberg, and Yahav,

2019; Lacroce, Panangaden, and Rabusseau, 2021). All
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these works are motivated by the implicit assumption that

WAs enjoy better transparency than their neural counter-

parts. However, the existing litterature lacks a formal ar-

gument to substantiate this claim. One of the primary moti-

vations of this work is to shed some light on this issue.

• Contributions. The main results presented in this article

are given as follows:

1. A constructive proof showing that the computation of

the SHAP score for the class of WAs is tractable under

the assumption that the background data generating

distribution is Markovian (section 3).

2. Under the same assumption, a constructive proof of

the tractability of computing the SHAP score for the

class of disjoint DNFs and the family of decision trees

(section 4).

2. Background

For a given integer n > 0, we denote by [n] the set of all

integers from 1 to n. The indicator function of a set X
shall be denoted as IX . Recall that an indicator function of

a subset X in X is a binary-valued function that assigns the

value 1 to x ∈ X , 0 otherwise.

A computational function problem f : I → R, where I is

referred to as the set of instances, is in FP if it can be com-

puted exactly using an algorithm that runs in time polyno-

mial in the size of the instance.

• Languages and seq2seq languages. Let Σ be a finite

alphabet. The elements of Σ will be referred to as symbols.

Σ∗ (resp. Σ∞) denotes the set of all finite (resp. infinite)

sequences formed by Σ. For a given sequence w ∈ Σ∗,

we denote by |w| its length, wi:j the subsequence of w that

spans from the i-th symbol to the j-th symbol in w, and wi

to refer to its i-th symbol. A language f is a mapping from

Σ∗ to R. When the image of a language f is binary, then it

will be called unweighted, in which case the language rep-

resents a subset of Σ∗ equal to Lf = f−1({1}). We extend

the definition of languages to cover unweighted languages

over Σ∗, by allowing the notation: f(L)
def
=

∑

w∈L

f(w) (if it

exists) for an unweighted language L. An analogous con-

cept of a language is the concept of a seq2seq language.

For two finite alphabets Σ and ∆, a seq2seq language is a

mapping from Σ∗ ×∆∗ to R.

When a language (or, a seq2seq language) f is computed

by a model M , such as a weighted automaton (WA) or a

weighted transducer (WT), we shall use the notation fM to

designate the language (or, seq2seq language) computed by

M .

• Operators over languages/seq2seq languages. In this

article, three operators over languages will be useful in our

analysis. We shall briefly define them in the following:

1. The product operator: The product operator, also

known as the hadamard product (Droste and Gastin,

2009; Mohri, 2004), takes two languages f, g over

Σ∗ and outputs the product language f · g. We shall

employ the notation f ⊗ g to refer to the product lan-

guage of f and g.

2. The partition constant operator: The partition con-

stant operator takes a language f over Σ∗, an integer

n, and outputs the quantity f(Σn) =
∑

w∈Σn

f(w). The

partition constant operation of a language f at the sup-

port n > 0 will be denoted as |f |n.

3. The projection operator: The projection operator

takes as input a language f over Σ∗ and a seq2seq

language g over Σ∗ × ∆∗ and outputs a language h
over ∆∗ given as

h(u) =
∑

w∈Σ|u|

f(w) · g(w, u)

In the sequel, we shall use the notationΠ(f, g) to refer

to the projection operator.

• Patterns. For an alphabet Σ, a pattern p is a regu-

lar expression that takes the form: Σi1w1 . . .ΣinwnΣ
in+1 ,

where {ik}k∈[n+1] is a set of integers, and {wk}k∈[n+1] is a

collection of sequences over Σ∗. The language accepted by

a pattern p shall be denoted Lp. Analogous to sequences,

the symbol |p| will refer to its length. In addition, |p|# will

denote the number of occurrences of the symbol Σ in p.

In this article, the pattern formalism will be employed to

represent coalitions of features in the SHAP score formula.

Often, they shall be treated as sequences formed by an ex-

tended alphabet Σ# = Σ ∪ {#}, where # is a special

symbol that replaces the symbol Σ present in the regular

expression associated to a pattern p. For example, the pat-

tern p = Σ00Σ2 over the binary alphabet Σ = {0, 1} is

represented by the sequence p = #00## over Σ#.

By treating patterns as sequences over Σ∗
#, we can describe

languages over patterns in the usual way. In particular, the

following languages over patterns will be used in the re-

mainder of this article. Given a sequence w ∈ Σ∗ and an

integer k ∈ [|w|], define the (unweighted) language over

Σ∗
# as:

Lwk
def
= {p ∈ Σ

|w|
# : w ∈ Lp ∧ |p|# = k}

The uniform distribution over the set Lwk will be referred to

as Pw
k , and the language

⋃

k∈[|w|]

Lwk as Lw.
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A final operation over patterns that will appear in the refor-

mulation of the SHAP score formula introduced later in this

section is the swap operation. Given a pattern p ∈ Σ∗
#, an

integer i ∈ [|w|], swap(p, i) refers to the (perturbed) pat-

tern p′ generated by replacing the i-th element of p with #.

For example, swap(##00#1, 3) = ###0#1.

• Markovian distributions. Formally, a Markovian prob-

ability distribution P over Σ∞ is parametrized by <
Pinit, {Pn}n>0 >, where Pinit is a probability distribution

over Σ, and for any integer n > 0, Pn is a stochastic matrix
1 in |Σ| × |Σ|. For an integer n > 0, P induces a proba-

bility distribution over the support Σn, denoted P (n), such

that for any sequence w ∈ Σn:

P (n)(w)
def
= P (wΣ∞) = Pinit(w1) ·

n−1
∏

i=1

Pi[wi, wi+1]

We shall abuse notation and use Pi(σ
′|σ) instead of

Pi[σ, σ
′] interpreted as the probability of generating the

symbol σ′ at position i+1 conditioned on the generation of

the symbol σ at position i. When there is no confusion of

the support of the distribution, we shall omit the subscript

from the notation P (n).

For computational considerations, we constrain the family

of Markovian distributions to those whose set of parameters

can be efficiently queried:

Definition 2.1. A Markovian distribution over Σ∞ is

polynomial-time computable if there exists an algorithmic

procedure that takes as input an integer n > 0, runs in

O(poly(n, |Σ|)) and outputs the transition matrix Pn.

As a notable example, the probability distribution gener-

ated by the class of 1-gram models is trivially polynomial-

time computable. The set of polynomial-time computable

Markovian distributions will be denoted MARKOV. When

P ∈ MARKOV is given as an input instance to a computa-

tional function problem, it refers to a machine that imple-

ments the algorithmic procedure defined implicitly in defi-

nition 2.1.

An additional technical assumption on Markovian distribu-

tions considered in this article is that all elements of their

stochastic matrices and Pinit are greater than 0.

2.1. Weighted Automata/Transducers

• Weighted Automata. Weighted Automata (WAs) ex-

tend the classical family of finite automata accepting un-

weighted languages by allowing transitions to be endowed

with weights, construed as probabilities, costs, or scores de-

pending on the application at hand. A linear representation

of WAs is formally defined as follows:

1A stochastic matrix is a positive matrix such that the sum of
its row elements is equal to 1

Definition 2.2. ((Denis and Esposito, 2008)) Let Σ be an

alphabet and n > 0 be an integer. A WA A over Σ∗ is

represented by a tuple < α, {Aσ}σ∈Σ, β > where Aσ ∈
R

n×n is the transition matrix associated to a symbol σ in

Σ, and α (resp. β) are vectors in R
n that represent the

initial (resp. final) vectors. The integer n is called the size

of A, denoted size(A).

A WA A =< α, {Aσ}σ∈Σ, β > over Σ∗ computes the lan-

guage

fA(w) = αT ·Aw · β

where Aw
def
=

|w|
∏

i=1

Awi
.

• Weighted transducers. Weighted transducers (WTs)

represent the analogous version of WAs adapted to model

seq2seq languages. It has been employed in applications

including speech processing (Mohri, Pereira, and Riley,

2008; Lehr and Shafran, 2010), machine translation

(Kumar, Deng, and Byrne, 2006) and image processing

(Culik and Friš, 1995)

Analogous to WAs, WTs admit a linear representation

given as follows:

Definition 2.3. Let Σ, ∆ be two finite alphabets and n > 0
be an integer. A WT T over Σ∗ ×∆∗ is represented by the

tuple < α, {Aσ′

σ }(σ,σ′)∈Σ×∆, β >, where α ∈ R
n, Aσ′

σ ∈
R

n×n, β ∈ R. The integer n is called the size of T , de-

noted size(T ).

A WT T =< α, {Aσ′

σ }σ∈Σ,σ′∈∆, β > over Σ∗ ×∆∗ com-

putes the seq2seq language

fT (w, u) = αT ·

|w|
∏

i=1

Aui
wi
· β

where (w, u) ∈ Σ∗ ×∆∗ such that |w| = |u| 2.

Earlier in this section, we introduced three operators over

languages/seq2seq languages, namely the product operator,

the partition constant and the projection operator. The al-

gorithmic construction we shall furnish in later sections

to compute the SHAP score will involve performing a

sequence of these operations over languages/seq2seq lan-

guages described by WAs/WTs whose parametrization will

depend on the input instance of the problem.

The following provides a technical lemma proving the com-

putational efficiency of implementing these operators over

languages/seq2seq languages represented by WAs/WTs.

Lemma 2.4. Fix two finite alphabets Σ, ∆.

2Note that WTs described via linear representations assign an
output value only to a pair of sequences that have the same length.
This formalism is sufficient in the context.
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1. The product operator. There exists an algorithm

that takes as input two WAs A, B, runs in

O(poly(size(A),size(B), |Σ|)) and outputs a

WA A ⊗ B that computes the product language fA ⊗
fB .

2. The partition constant operator. There exists an al-

gorithm that takes as input a WA A and an integer

n > 0, runs in O(poly(size(A), n, |Σ|)) and out-

puts |fA|n.

3. The projection operator. There exists an algorithm

that takes as input a WA A, a WT T , runs in

O(poly(size(A),size(T ), |Σ|) and outputs the

language Π(fA, fT ).

The proof of lemma 2.4 can be found in appendix A.

2.2. The SHAP score.

Stemming its root from the field of cooperative game the-

ory (Deng and Papadimitriou, 1994), the SHAP framework

is built on top of an analogy between cooperative games

and the local explainability problem of ML models. A co-

operative game is described by a set of players N and a

value function v that assigns a generated wealth for each

subset of players, referred to as a coalition, cooperating in

the game. By analogy, in the context of explainable ML,

the players are the input features of a ML model subject to

explanatory analysis. And, the value assigned to a coalition

is equal to the the expected model’s output conditioned on

the event that the features forming the coalition possess a

value equal to the instance to explain.

Similar to Shapley’s original cooperative game theory

(Shapley, 1953), the SHAP explainability method offers at

its core a formal characterization of a fair distribution mech-

anism across input features that reflects their respective de-

gree of contribution to the generated model’s output for a

given instance to explain, culminating in what’s commonly

known as the SHAP score.

Formally, let M be a model that computes a function fM
from a discrete set X = X1 × . . . × Xn to R, and P be a

probability distribution overX . For an input x ∈ X , and an

integer i ∈ [n], the SHAP score assigned to the i-th feature

for the instance x is given as (Lundberg and Lee, 2017):

SHAP(M,x, i, P )
def
=

∑

S⊆[n]

|S|!(n− |S| − 1)!

n!
· (1)

[v(S;M,x, P )− v(S \ {i};M,x, P )]

where for a subset S ⊆ [n], the value function v is defined

as

v(S;M,x, P )
def
= EX∼P [fM (X)|XS = xS ] (2)

We propose an alternative formulation of the SHAP score

formula tailored to better suit sequential models computing

languages. For an alphabet Σ, a model M that computes a

language over Σ∗, a probability distribution P over Σ∞, a

string w ∈ Σ∗ and an integer i ∈ [|w|]. The SHAP value

assigned to the symbol wi in w is given as:

SHAP(M,w, i, P ) =

|w|−1
∑

k=1

1

|w| − k
Ep∼Pw

|w|−k
[V (p;M,w, P )

(3)

− V (swap(p, i);M,w, P )]

where

V (p;M,w, P )
def
= Ew′∼P |w| [fM (w′)|w′ ∈ Lp] (4)

The main idea behind this reformulation consists at mod-

eling coalitions as patterns. For example, for a sequence

w = abbaa over the alphabet Σ = {a, b}, and k = 2, the

pattern p = #b#a# in Lw3 coincides with the coalition of

size 2 formed by the second and the forth symbol of w.

The faithfulness of the SHAP value formula given in (3) to

the one in (1) (for the case of sequential models) can be

checked by decomposing the summation in the original for-

mulation of the SHAP score (equation (1)) over coalitions

of the same size, and by noting that for k ∈ [|w| − 1], and

a pattern p ∈ Lw|w|−k
, we have

Pw
|w|−k(p) =

1

|Lw
|w|−k

|
=

k! · (|w| − k)!

|w|!

In the sequel, whenever the SHAP score formula is men-

tioned, it shall refer to the one tailored for sequential

models using the pattern formalism (equation (3)). To

avoid confusion between models computing languages and

boolean functions treated in section 4.3, we shall use the

notation
−−−→
SHAP for this latter case.

The formal definition of the meta-computational problem

associated to SHAP score is given as follows:

Fix an alphabet Σ. LetM be a class of sequential models

that compute languages over Σ∗, and P is a class of prob-

ability distributions over Σ∞. The computational meta-

problem associated to the SHAP score is given formally

as follows:

• Problem: SHAP(M,P)
Instance: M ∈ M, a sequence w ∈ Σ∗, an integer i ∈
[|w|], and P ∈ P
Output: Compute SHAP(M,w, i, P )

The next section is dedicated to the examination of the

computational complexity of the particular instance of this

problem where M = WA and P = MARKOV, namely

SHAP(WA,MARKOV).

4
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3. The problem SHAP(WA,MARKOV) is in FP.

The main result of the article is stated in the following the-

orem:

Theorem 3.1. The computational problem

SHAP(WA,MARKOV) is in FP.

In essence, Theorem 3.1 states the existence of an

algorithm that computes exactly the SHAP score for

the class of WAs under Markovian distributions in

O(poly(size(A), |Σ|, |w|)) time where A is the WA

given in input instance.

The remainder of this section is dedicated to provide the

high-level steps of the proof of theorem 3.1. Technically

engaged proofs of intermediary results are delegated to the

appendix. At a high-level, the structure of the proof follows

two steps, where the second step is decomposed in two sub-

steps:

1. A decomposition of the problem SHAP(WA,MARKOV):
The first step involves a decomposition of the SHAP

score formula into a sum of functions, denoted

SHAP1, SHAP2, which will be defined later in this

section. By means of a reduction argument, we shall

prove that if the computational problems associated to

SHAP1, SHAP2 are in FP, then SHAP(WA,MARKOV)
is also in FP (lemma 3.2).

2. The problems SHAP1, SHAP2 are in FP:

In the second step, we shall show that the computa-

tional problems associated to SHAP1, SHAP2 are in

FP. (lemma 3.3). The proof of this statement will fol-

low two sub-steps:

(a) In the first sub-step, we shall prove that the com-

putation of SHAP1 and SHAP2 is reduced to

performing a finite sequence of operations over

languages/seq2seq languages whose parametriza-

tion will depend on the input instance of the prob-

lem (lemma 3.4).

(b) In the second sub-step, we show that WAs/WTs

that compute languages/seq2seq languages over

which operations are performed in the previous

step can be constructed.

The proof is essentially constructive, and can be translated

to a practical implementation. The organisation of the re-

mainder of this section will follow the structure of the proof

given above.

3.1. Step 1: A decomposition of the problem

SHAP(WA,MARKOV).

For a model M computing a language over Σ∗, a sequence

w ∈ Σ∗, an integer (i, k) ∈ [|w|] × [|w| − 1], and P a

probability distribution over Σ∞. Define the following two

functions:

SHAP1(M,w, k, P )
def
= Ep∼Pw

k
V (p;M,w, P ) (5)

and,

SHAP2(M,w, i, k, P )
def
= Ep∼Pw

k
V (swap(p, i);M,w, P )

(6)

By a simple manipulation of the SHAP score formula in

(3), we obtain

SHAP(M,w, i, P ) =

|w|−1
∑

k=1

1

k
[SHAP1(M,w, k, P )

− SHAP2(M,w, i, k, P )]

(7)

The formal definition of the computational problems as-

sociated with the computation of SHAP1, SHAP2 for the

class of WAs under the family of Markovian distributions

is given as follows:

• Problem: SHAP1(WA,MARKOV)
Instance: A WA A, a sequence w in Σ∗, an integer k ∈
[|w|], P ∈ MARKOV
Output: Compute SHAP1(A,w, k, P )

• Problem: SHAP2(WA,MARKOV)
Instance: A WA A, a sequence w in Σ∗, two integers

(k, i) ∈ [|w|]2, P ∈ MARKOV
Output: Compute SHAP2(A,w, i, k, P )

The polynomial-time reduction of the problem

SHAP(WA,MARKOV) to SHAP1(WA,MARKOV) and

SHAP2(WA,MARKOV) is straightforward in light of

equation (7). The following lemma formally states this

fact:

Lemma 3.2. If SHAP1(WA,MARKOV) and

SHAP2(WA,MARKOV) are in FP, then SHAP(WA,MARKOV)
is in FP.

Proof. The proof is straightforwardly obtained from

equation (7). Assume SHAP1(WA,MARKOV) and

SHAP2(WA,MARKOV) are in FP. Then, there exists two

algorithms, sayA1 andA2, that solve the problems SHAP1

and SHAP2 respectively in O(poly(size(A), |w|, |Σ))
time.

Fix an input of instance < M,w, i, P > of

SHAP(WA,MARKOV). To compute SHAP(M,w, i, P )
using A1, A2 as oracles, run the following schema:

1. Call A1 on the set of input instances {< M,w, k, p >
}k∈[|w|] yielding {yk}k∈[|w|]

5
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2. Call A2 on the set of input instances

{< M,w, i, k, P >}k∈[|w|] yielding {y′k}k∈[|w|]

3. Output:
|w|−1
∑

k=1

1
k
(yk − y′k)

The correctness of this schema to solve

SHAP(WA,MARKOV) is guaranteed by equation (7).

In addition, by assumptions on A1, A2, this schema runs

also in O(poly(size(A), |Σ|, |w|) time.

3.2. Step 2: SHAP1(WA,MARKOV) and

SHAP2(WA,MARKOV) are in FP.

This segment is dedicated to provide the outline of the

proof of the following lemma:

Lemma 3.3. The problems SHAP1(WA,MARKOV) and

SHAP2(WA,MARKOV) are in FP.

The result of the main theorem 3.1 is an immediate corol-

lary of lemma 3.2 and lemma 3.3 presented in the previous

segment of this section.

The proof of lemma 3.3 will follow two steps. In the first

step, the formulas of SHAP1 and SHAP2 will be reformu-

lated in terms of operations over languages/seq2seq lan-

guages defined in section 2. The parametrization of these

languages depends on the input instance of the problem.

In the second step, we will show that WAs and WTs can

be constructed in polynomial time that compute these lan-

guages/seq2seq languages. Combining the results of the

two steps and the efficiency of implementing these opera-

tors for the case of WAs/WTs (lemma 2.4), the proof of

lemma 3.3 can be easily obtained.

3.2.1. STEP 2.A: COMPUTATION SHAP1, SHAP2 IN

TERMS OF LANGUAGE OPERATORS.

The following lemma provides a reformulation of the func-

tions SHAP1 and SHAP2 in the form of operations over

languages whose properties depend on the input instance

of their respective problems:

Lemma 3.4. Let A be a WA over Σ∗, a sequence w ∈ Σ∗,

two integers (i, k) ∈ [|w|]×[|w|−1], and P be an arbitrary

probability distribution over Σ∞. We have

SHAP1(A,w, k, P ) = |fw,k ⊗Π(fA, g
(1)
w,P )||w| (8)

and,

SHAP2(A,w, i, k, P ) = |fw,k ⊗Π(fA, g
(2)
w,i,P )||w| (9)

where

• fw,k = Pw
k ,

• g
(1)
w,P is a seq2seq language over Σ∗×Σ∗

# that satisfies

the following constraint:

∀(w′, p) ∈ Σ|w|×Σ
|w|
# : g

(1)
w,P (w

′, p) = P (w′|w′ ∈ Lp)
(10)

• g
(2)
w,i,p is a seq2seq language over Σ∗ × Σ∗

# that satis-

fies the following constraint:

∀(w′, p) ∈ Σ|w|×Σ
|w|
# : g

(2)
w,i,P (w

′, p) = P (w′|w′ ∈ Lswap(p,i))
(11)

The proof is given in appendix B.

Expressions (8) and (9) reduce the problem of computing

SHAP1 and SHAP2 to that of performing operations over a

language fw,k and two seq2seq languages, g
(1)
w,P , g

(2)
w,i,P

whose properties are given by equations (10) and (11) ,

respectively. The missing link to complete the proof of

lemma 3.3 is to prove that a WA that implements the

language fw,k, and WTs that compute seq2seq languages

g1w,k, g
2
w,k whose properties are given in lemma 3.4 can be

constructed in polynomial time.

3.2.2. STEP 2.B: CONSTRUCTION OF WAS/WTS THAT

COMPUTE fw,k, g
1
w,P , g

2
w,i,P

The key insight of the article is the following:

If P ∈ MARKOV, two seq2seq languages g
(2)
w,P and g

(2)
w,i,P

that satisfy the constraints (10) and (11), respectively, ad-

mit a representation using the WA/WT formalism. In ad-

dition, the construction of WAs and WTs that compute

these languages/seq2seq languages can be performed in

time polynomial in the size of the input instance.

The next lemma provides a formal statement of this fact

while also covering the language fw,k.

Lemma 3.5. 1. The language fw,k: There exists an al-

gorithm A1 that takes as input, a sequence w ∈ Σ∗,

an integer k ∈ [|w| − 1], runs in O(poly(|w|)), and

outputs a WA Ak,w over Σ∗
# that computes the lan-

guage fw,k = Pw
k .

2. The seq2seq language g
(1)
w,P : There exists an algo-

rithm A2 that takes a sequence w ∈ Σ∗, and P ∈
MARKOV, runs in O(poly(|w|, |Σ|)), and outputs a

WT Tw,P that computes a seq2seq language that satis-

fies the constraint (10).

3. The seq2seq language g
(2)
w,i,P : There exists an algo-

rithm A3 that takes as input a sequence w ∈ Σ∗,

an integer i ∈ [|w|], and P ∈ MARKOV, runs in

O(poly(|w|, |Σ|)), and outputs a WT that imple-

ments a seq2seq language over that satisfies the con-

straint (11)
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The proof of lemma 3.5 is constructive, and can be found

in appendix C.

In the sequel, we shall refer to algorithms that compute

fw,k, g
(1)
w,P and g

(2)
w,i,P by A1, A2 andA3, respectively.

It’s worth noting that since A1, A2 and A3 run in time

polynomial in their respective input instances implies that

the size of their output machines is also polynomial in the

size of their input instance3. This fact will appear explicitly

in the constructive proof of lemma 3.5.

In light of lemma 3.4 and 3.5, we are ready to prove the

main lemma of this subsection:

Proof. (lemma 3.3) We shall prove that SHAP1 is in FP. A

similar argument can be applied to derive the same result

for SHAP2.

Define the following algorithmic schema that takes as input

an instance < A,w, k, P > where A is a WA, w ∈ Σ∗,

i ∈ [|w|] and P ∈ MARKOV:

1. Aw,k ← A1(w, k)

2. Tw,P ← A2(w,P )

3. Output: |fAw,k
⊗Π(fA, fTw,P

)||w|

By lemma 3.4 (equation (8)), and the properties ofA1, A2

(lemma 3.5), this schema solves exactly the problem

SHAP1(WA,MARKOV).

In addition, this schema also runs in

O(poly(size(A), |w|, |Σ|)). Indeed, by lemma 3.5,

steps 1 and 2 run in O(poly(|w|) and O(poly(|w|, |Σ|)),
respectively. Consequently, by FP ⊂ FPSPACE, the size

of their outputs Aw,k, and Tw,k,P is also polynomial in |w|
and |Σ|.

On the other hand, given that the operators⊗, |.|n, Π over

languages represented by WAs/WTs can be computed in

polynomial time with respective to the size of their input

instances (lemma 2.4), this proves that the third step of the

schema also runs in O(poly(size(A), |w|, |Σ|)) time.

4. SHAP(D-DNF,MARKOV) and

SHAP(DT,MARKOV) are in FP

In this section, we switch our focus to boolean functions, in

particular the class of disjoint-DNFs (d-DNF). The choice

of this family of models is mainly motivated by the fact

that it encompasses the family of decision trees, a cen-

tral class of glass-box models capturing substantial atten-

tion within the explainable AI community. Recent works

3FP ⊂ FPSPACE

have been dedicated to exploring the computation of SHAP

scores for Tree-based models across diverse configurations

(Lundberg et al., 2020; Yang, 2021; Arenas et al., 2023;

Yu et al., 2022). Later in this section, we shall prove that

computing the SHAP score for the family of decision trees

under Markovian distributions is reducible in polynomial

time to SHAP(WA,MARKOV), offering a polynomial-time

algorithmic construction to compute the SHAP score for

the family of decision trees under the Markovian assump-

tion.

• Disjoint-DNFs. A d-DNF is a boolean formula formed

as a disjunction of conjunctive clauses that are pairwise mu-

tually exclusive.

Example. Let X = {X1, X2, X3, X4} be a set of binary

variables. The formula

Φ = (X1∧X3∧X4)∨ (X̄1∧X2∧X3)∨ (X2∧X̄3) (12)

is a d-DNF over the variables {Xi}i∈[4] comprising 3

clauses. Indeed, for any two distinct clauses (Ci, Cj) for

(i, j) ∈ [3]2, the intersection of the set of satisfying vari-

able assignments for Ci and Cj is empty.

A Markovian distribution P over a boolean random vector

of dimension N is given as: 4

P (X1, . . . , XN) = Pinit(X1)
N−1
∏

i=1

Pi(Xi+1|Xi)

To avoid confusion with the sequential case, the set of

Markovian distributions over boolean vectors shall be de-

noted
−−−−−→
MARKOV. For an integer N > 0,

−−−−−→
MARKOVN will

refer to the set of Markovian distributions over boolean vec-

tors of dimension N .

The formal definition of the computational problem asso-

ciated to compute the SHAP score of the class of d-DNFs

under Markovian distributions is given as follows:

• Problem: SHAP(d-DNF,
−−−−−→
MARKOV)

Instance: A d-DNF Φ over N boolean variables, an in-

stance −→x ∈ {0, 1}N , an integer i ∈ [N ], P ∈
−−−−−→
MARKOVN

Output: Compute
−−−→
SHAP(Φ, x, i, P )

The complexity size of the input instance of this problem

is given by the number of variables of Φ, denoted |Φ|, and

the number of clauses in the d-DNF denoted |Φ|#.

The claim of this section is given in the following theorem:

Theorem 4.1. SHAP(d-DNF,
−−−−−→
MARKOV) is in FP.

4In reality, the set of Markovian distributions is more general
and ranges over all possible permutations of [N ]. For the sake of
simplification, we consider only the case of Markovian distribu-
tions under the identity permutation. We note that this assumption
doesn’t have an impact on the tractability results presented in this
section.

7



On the tractability of SHAP explanations under Markovian distributions

The proof of theorem 4.1 will proceed by reduction to the

problem SHAP(WA,MARKOV).

Before providing the details of the reduction strategy, we

shall present an interesting corollary of theorem 4.1, stating

that the SHAP score computational problem for the family

of decision trees under Markovian distributions is in FP.

Corollary 4.2. Denote by DT the set of decision

trees computing boolean functions. The problem

SHAP(DT,
−−−−−→
MARKOV) is in FP.

Proof. This result follows immediately from theorem 4.1,

and the fact that given an arbitrary decision tree in DT, an

equivalent d-DNF can be constructed in polynomial time

with respect to the size of the decision tree (Property 1,

(Aizenstein and Pitt, 1992)).

4.1. Proof of theorem 4.1: Reduction strategy

Unlike WAs, d-DNFs compute boolean functions instead

of languages. For the sake of the reduction, a first step con-

sists at performing a sequentialization operation of the in-

put instance of the problem SHAP(d-DNF,
−−−−−→
MARKOV). We

give next details of the construction.

• Sequentialization of Markovian distributions: For an

integer N > 0, the sequentialization of a Markovian distri-

bution in
−−−−−→
MARKOVN to one in MARKOV must ensure that

both distributions are equal in the support {0, 1}N . In-

deed, since the SHAP score of boolean functions over N
variables considers only the support [N ], the choice of

the transition probability matrices for integers larger than

i > N can be set arbitrary, provided the resulting Marko-

vian distribution remains polynomial-time computable. A

possible sequentialization strategy of a distribution of P in
−−−−−→
MARKOVN is given by a P̃ ∈ MARKOV (which depends on

P ) such that:

P̃init = Pinit, P̃i(Xi+1|Xi) =

{

Pi(Xi+1|Xi) if i ∈ [N ]

Punif (Xi+1) elsewhere

where Punif (Xi+1) is the uniform distribution over {0, 1}.

• Sequentialization of d-DNFs. For any integer N > 0,

and any boolean vector
−→
X over {0, 1}N , SEQ(

−→
X ) refers to

the sequence X1 . . . XN formed by the binary alphabet.

For a given d-DNF Φ over N variables. Its sequential ver-

sion is represented by the unweighted languageLΦ overΣ∗

such that:

LΦ
def
= {w ∈ {0, 1}|Φ| :

−→
X = SEQ

−1(w) satisfies Φ}

Basically, LΦ comprises the set of all satisfied assignments

by the formula Φ arranged in a sequence. The following

lemma is key to prove theorem 4.1. It establishes the exis-

tence of an algorithm that constructs in polynomial time a

WA that computes the language IΦ.

Lemma 4.3. There exists an algorithm that takes as input

a d-DNF Φ, runs in time polynomial in |Φ| and |Φ|#, and

outputs a WA that computes the language ILΦ .

The proof of lemma 4.3 can be found in appendix D.

Next, we provide the proof of theorem 4.1.

Proof. (Theorem 4.1) For an input instance

< Φ,−→x , i, P > of the problem SHAP(d-DNF,MARKOV).
One can observe that:

−−−→
SHAP(Φ, x, i, P ) = SHAP(ILΦ ,SEQ(

−→x ), i, P̃ ) (13)

Equation (4.1) suggests the following polynomial-time

reduction strategy from SHAP(d-DNF,
−−−−−→
MARKOV) to

SHAP(d-DNF,MARKOV):

1. Construct a WA that computes the language

ILΦ . By lemma 4.3, this can be performed in

O(poly(|Φ|, |Φ|#)) time.

2. Apply the SEQ(.) operation on −→x .

3. Wrap the parameters of P in a machine implement-

ing P̃ . For an input integer i > 0, it tests whether

i > N . If the answer is yes, it returns the uniform dis-

tribution. Otherwise, it returns Pi. The construction

of this machine runs in O(|Φ|) time. In addition, the

resulting Markovian distribution is polynomial-time

computable.

5. Conclusion

In this article, we established the tractability of the SHAP

score computational problem under the Markovian assump-

tion for the family of weighted automata and the family

of disjoint-DNFs which encompasses, up to a polynomial-

time reduction, the family of decision trees. The proof is

constructive and is readily amenable to a translation into

a practical algorithm that extends TreeSHAP to handle the

Markovian case.

In conclusion, we note that, by revisiting algorithms de-

signed to generate WTs that compute the seq2seq lan-

guages g
(1)
w,P , g

(2)
w,i,P (lemma 3.5), the algorithmic construc-

tion described in this article can be easily extended to adapt

to higher-order markovian distributions, e.g.n-gram mod-

els (Fink, 2014), provided the order of the distribution is of

reasonably small size.

In feature research, we aim at exploring the possibility to

extend the tractability of SHAP explanations for other fam-

ilies of models under the Markovian assumption. An in-

teresting family to be considered as a natural extension is

8
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the class of Deterministic Decomposable Circuits whose

SHAP score computation under the feature independence

assumption has been proven to be in FP (Arenas et al.,

2023).
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A. Proof lemma 2.4

Lemma 2.4 establishes the existence of efficient procedures to compute the product, partition constant and projection

operators over languages/seq2seq languages computed by means of WAs/WTs. In the same spirit of all results provided in

this article, we shall provide a constructive proof of this lemma. In the sequel, we fix two finite alphabets Σ, ∆.

The proof will rely on the notion of Kronecker product between matrices. A brief recall of this latter is given in the

following.

• The Kronecker product: The Kronecker product between A ∈ R
n×m and B ∈ R

k×l, denoted A ⊗ B, is a matrix in

R
(n·k)×(m·l) constructed as follows

A⊗B =











a1,1 · B a1,2 · B . . . a1,m ·B]
a2,1 · B a2,2 · B . . . a2,m ·B]

...
...

...
...

an,1 · B an,2 · B . . . an,m · B











where, for (i, j) ∈ [n]× [m] ai,j corresponds to element in the i-th row and j-th column of A.

A useful property of the Kronecker product in our context is the mixed-product property:

Proposition A.1. (Proposition 2.1, (Kiefer et al., 2013)) Given A, B, C, D matrices with judicious dimensions, we

have (A ·B)⊗ (C ·D) = (A⊗ C) · (B ⊗D)

Next, we prove the result of the three points mentioned in the lemma:

• The product language of WAs: An important property of WAs is their closure under the product operation. This fact is

classical in the theory of rational languages and has been proven in Schützenberger’s seminal paper (Schützenberger, 1961)

where WAs have been first introduced.

For the sake of completeness, the following proposition provides the details of the construction of a WA that computes the

product of two languages represented by their WAs:

Proposition A.2. Let A =< α, {Aσ}σ∈Σ, β > and A′ =< α′, {A′
σ}σ∈Σ, β

′ > be two WAs over Σ∗.

The WA A⊗A′ =< α⊗ α′, {Aσ ⊗A′
σ}σ∈Σ, β ⊗ β′ > over Σ∗ computes the language

fA⊗A′(w) = fA(w) · fA′(w)

for any w ∈ Σ∗.

Proof. Let A =< α, {Aσ}σ∈Σ, β >, and A′ =< α′, {A′
σ}σ∈Σ, β

′ > be two WAs. Denote by A ⊗ A′ the WA <
α⊗ α′, {Aσ ⊗A′

σ}σ∈Σ, β >.

For an arbitrary string w ∈ Σ∗, we have:

fA(w) · fA′(w) = (αT ·

|w|
∏

i=0

Awi
· β) · (α′T ·

|w|
∏

i=0

A′
wi
· β′)

= (αT ⊗ α′T ) ·

|w|
∏

i=1

(Awi
⊗Aw′

i
) · (β ⊗ β′)

= (α⊗ α′)T ·

|w|
∏

i=1

(Awi
⊗Aw′

i
) · (β ⊗ β′)

= fA⊗A′(w)

where the second equality results from the mixed-product property of the Kronecker product (proposition A.1).

The construction of the product WA runs in O(|Σ| · size2(A) · size2(A′)).

• The partition constant operator of WAs: The following proposition provides an implicit polynomial-time procedure

that computes the quantity |fA|n for a WA A.
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Proposition A.3. Let A =< α, {Aσ}σ∈Σ, β > be a WA over Σ∗ and an integer n > 0. We have:

|fA|n = αT · (
∑

σ∈Σ

Aσ)
n · β

Proof. Let A =< α, {Aσ}σ∈Σ, β > be a WA over Σ∗ and an integer n > 0. We first prove by induction that for any

n > 0, we have
∑

w∈Σn

Aw = (
∑

σ∈Σ

Aσ)
n (14)

The case n = 1 is trivial.

Assume the expression (14) is true for an integer n > 0. Let’s prove it is also the case for n+ 1. We have:

∑

w∈Σn+1

Aw =
∑

w∈Σn

∑

σ∈Σ

Awσ =
∑

w∈Σn

Aw ·
∑

σ∈Σ

Aσ = (
∑

σ∈Σ

Aσ)
n+1

which proves the equality (14).

Let A =< α, {Aσ}σ∈Σ, β >. For an integer n > 0, we have:

|fA|n = αT ·
∑

w∈Σn

Aw · β = αT · (
∑

σ∈Σ

Aσ)
n · β

where the second result is obtained from (14).

The complexity of implementing this operation is given as: O(size(A)2(|Σ|+ size(A)).

• The projection operator: The following proposition provides a proof of the third point of lemma 2.4:

Proposition A.4. Let Σ, ∆ be two finite alphabets. Let A =< α, {Aσ}σ∈Σ, β > be a WA over Σ∗ ,and T =<
α′, {Āσ′

σ }σ∈Σ, σ′∈Σ′ , β′ > a WT over Σ∗ × ∆∗. The WA Π(A, T ) =< α ⊗ α′, {
∑

σ∈Σ

Aσ ⊗ Āσ′

σ }σ′∈∆, β ⊗ β′ > over

Σ∗ computes the language Π(fA ⊗ fT ).

Proof. Let A be a WA over Σ∗, and T be a WT over Σ∗ ×∆∗.

Define the WA Π(A, T ) =< α⊗ α′, {
∑

σ∈Σ

Aσ ⊗ Āσ′

σ }σ′∈∆, β ⊗ β′ > constructed from A and T .

For an arbitrary u ∈ ∆∗, we have

∑

w∈Σ|u|

fA(w) · fT (w, u) =
∑

w∈Σ|u|

(αT ·

|w|
∏

i=1

Awi
· β)

· (α′T ·

|u|
∏

i=1

Āui
wi
· β′)

=
∑

w∈Σ|u|

(α⊗ α′)T · (

|u|
∏

i=1

Awi
⊗ Āui

wi
) · (β ⊗ β′)

= (α⊗ α′)T · (

|u|
∏

i=1

∑

σ∈Σ

Aσ ⊗ Āui
σ ) · (β ⊗ β′)

= fΠ(A,T )(u)

The complexity of the construction implicitly outlined in proposition A.4 is O(size(A)2 × size(T )2 × |Σ|).

12
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B. Proof lemma 3.4

We’ll show the expression (8). The expression (9) can be obtained by mimicking the proof herein.

Let A be a WA, a sequence w ∈ Σ∗, an integer k ∈ [|w| − 1], and P be an arbitrary distribution over Σ∞. Let fw,k (resp.

g
(1)
w,P ) a language (resp. seq2seq language) whose properties are given in the statement of the lemma. We have:

SHAP1(A,w, i, k, P ) = Ep∼Pw
k
Ew′∼P (|w|) [fA(w

′)|w′ ∈ Lp]

=
∑

p∈Σ
|w|
#

Pw
k (p)

∑

w′∈Σ|w|

fA(w
′) · P (w′|w′ ∈ Lp)

=
∑

p∈Σ
|w|
#

fw,k(p) ·
∑

w′∈Σ|w|

fA(w
′) · g

(1)
w,P (w

′, p)

=
∑

p∈Σ
|w|
#

fw,k(p) ·Π(fA, g
(1)
w,P )(p)

=
∑

p∈Σ
|w|
#

fw,k(p) ·Π(fA, g
(1)
w,P )(p)

= |fw,k ⊗Π(fA, g
(1)
w,P )||w|

C. Proof lemma 3.5

The core statement of lemma 3.5 encompasses three results stating the existence of three efficient algorithmic procedures,

namelyA1, A2 andA3, that construct a collection of WAs/WTs whose characteristics are given in the lemma statement.

This appendix will be split into two segments. The first segment furnishes the algorithmic construction of A1. Due to the

close similarities of algorithmsA2, A3, they shall be treated simultaneously in the second segment.

Before outlining these constructions, we furnish a brief recall of some sub-families of WAs and WTs serving as a technical

background on top of which the proof will be built. In particular, three sub-families will be introduced: Determinstic Finite

Automata, deterministic WAs, and Deterministic Finite Transducers.

In the sequel, we fix an alphabet Σ, ∆.

• Deterministic finite Automata. The class of deterministic finite automata (DFAs) is a popular sub-family of WAs

adapted to model unweighted languages. A DFA is formally represented by a tuple < Q, qinit, δ, F >, where:

• Q is a finite set of states,

• qinit ∈ Q is called the initial state,

• δ : Q× Σ→ Q is a partial function 5 called the transition function,

• F ⊆ Q is called the the set of final states,

For a DFA A =< Q, qinit, δ, F >, a valid path over A labeled by a sequence w ∈ Σ∗ is a sequence of state-symbol pairs

taking the form: q0w1q1 . . . w|w|q|w|, such that for any i ∈ {0, . . . |w| − 1} : δ(qi, wi+1) = qi+1. A valid path labeled by

w is said to be accepting if q0 = qinit and q|w| ∈ F .

An important property of DFAs lies in that the cardinality of the set of its valid paths labeled by an arbitrary sequence

w ∈ Σ∗ is at most equal to 1. The unweighted language accepted by a DFA corresponds to the set of sequences that label

a valid accepting path over the DFA.

• Deterministic Finite Transducers. Deterministic Finite Transducers (DFTs) represent the analogous counterpart of

DFAs adapted to seq2seq languages, and constitutes a sub-family of WTs that compute unweighted seq2seq languages. A

DFT over Σ×∆ is formally represented by a tuple < Q, qinit, δ, F >

5A partial function f from a set X to Y is a function whose input domain is a subset of X (i.e. it doesn’t necessarily assign an output
to every element of x)
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• Q is a finite set of states.

• qinit is the initial state.

• δ : Q× Σ→ ∆×Q is a partial function called the transition function.

• F is called the set of final states.

The formal description of a DFT resembles to that of DFAs, and operates in a closely similar manner.

For a DFT T =< Q, qinit, δ, F >, a valid path over T labeled by a pair of sequences (u, v) ∈ Σ∗ × ∆∗ such that

|u| = |v| = n is a sequence of elements in Q × Σ × ∆ taking the form: q0u1v1q1 . . . unvnqn where for any i ∈
{0, . . . n− 1} : δ(qi, ui+1) = (vi+1, qi+1). A valid path over (u, v) ∈ Σ∗ ×∆∗ is said to be accepting if q0 = qinit and

qn ∈ F .

DFTs enjoy a similar property than DFAs in that for any pair of sequences over Σ∗×∆∗ with the same length, there exists

at most one valid path labeled by this pair. The unweighted seq2seq language accepted by a DFT is equal to the set of

sequence pairs over Σ∗ ×∆∗ that label a valid accepting path.

• Deterministic Weighted Automata. DWAs is the weighted variant of DFAs. It aligns with the structure of DFA while

augmenting its transitions with real-valued weights. Formally, a DWA is defined as follows:

• Q is a finite set of states,

• qinit ∈ Q is called the initial state,

• W : Q× Σ→ Q× R is a partial function 6 called the weight function,

• F ⊆ Q is called the the set of final states,

Similar to DFAs, any sequence w ∈ Σ∗ labels at most a valid path, where the notion of a valid path is equivalent to that of

DFAs. However, unlike DFAs, valid paths are assigned real-valued weighted instead of the boolean notion of acceptability.

The weight assigned to a path starting from the initial state qinitw1 . . . qn−1wn−1qn is equal to:

·
n−1
∏

i=1

W (qi, wi)[2] · IF (qn)

where W (q, σ)[2] refers to the weight associated to the transition δ(q, σ).

This weight coincides with the value assigned to the sequence w1 . . . wn by the seq2seq language computed by the WT.

Sequences that label no valid path are assigned the weight 0 by default.

After presenting this brief technical background, we are now ready to prove the core statement of the lemma:

C.1. Construction of A1.

Recall thatA1 refers to an algorithm that takes as input a string w ∈ Σ∗, an integer k ∈ [|w|]2, runs in O(poly(|w|)), and

outputs a WA over Σ∗
# that computes the language Pw

k . The probability distribution Pw
k refers to the uniform distribution

over the set of patterns:

Lwk
def
= {p ∈ Σ

|w|
# : |p|# = k ∧ w ∈ Lp}

The algorithmic construction of A1 aligns with two sequential steps:

1. Create a DFA over Σ∗
# that accepts the language Lwk ,

6A partial function f from a set X to Y is a function whose input domain is a subset of X (i.e. it doesn’t necessarily assign an output
to all elements of x)
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2. Normalize the resulting DFA by the quantity 1
|Lw

k
| to obtain the output WA. Note that |Lwk | is equal to

|w|!
(k)!·(|w|−k)! and

can be computed in O(poly(|w|)) time.

The second step of the algorithmic construction, i.e. the normalization step, is straightforward. Indeed, given a WA

A =< α, {Aσ}σ∈Σ, β > and a normalizing constant C ∈ R, the WA A′ =< C · α, {Aσ}σ∈Σ, β > computes the

(normalized) language fA′ = C · fA. In addition, it’s easy to observe that this operation can be performed in polynomial

time with respect to the size of A. Our claim, that we shall prove next in this subsection, is that the size of the DFA A is

O(poly(|w|)). Assuming this claim holds, the normalization operation runs in (poly(|w|).

The rest of this subsection will focus on the first step of the algorithmic construction:

• Creation of a DFA that accepts the language Lwk :

Fix an input instance w ∈ Σ∗, k ∈ [|w|]. A key observation for the DFA construction consists at noting that, during a

forward processing run over an input pattern to check its membership in Lwk , a sufficient information to keep of the run’s

history is summarized in the following:

• The position of the next symbol: This information is useful to ensure that the input pattern satisfies the constraint

w ∈ Lp imposed by definition of Lwk . Additionally, this information will enable rejecting the patterns whose length is

greater than |w|. In our case, this information lies in the interval {0, 1, . . . , |w|},

• The number of occurrences of the symbol # in the processed prefix of the input pattern: This information enables to

ensure that only patterns that satisfies the constraint |p|# = k will be accepted. In our case, this information lies in

the range {0, 1, . . . , k}.

In light of this discussion, the construction of the DFA that accepts the language Lwk :

• The state space: Q = {0, 1, . . . , |w|]× {0, 1, . . . , k}

• The initial state: qinit = (0, 0). The first element of the pair signifies that the forward run is at position 0 (i.e. no

symbol in the input pattern has been processed so far). The second element signifies that 0 occurrences of the symbol

# has been encountered in the processed input pattern so far.

• The transition function: For a state (l, l′) ∈ {0, . . . , |w| − 1} × {0, . . . , k − 1}

Case 1 (pl+1 = #). We increment both the number of occurences of # in the input pattern and the position of the

sequence by 1 which entails a transition to (l + 1, l′ + 1):

δ((l, l′),#) = (l + 1, l′ + 1)

Case 2 (pl+1 = wl+1). we increment the position of the input pattern to l + 1 without incrementing the number of

occurrences of #.

δ((l, l′), wl+1)) = (l + 1, l′)

No other transitions are added to the transition map for all the other cases.

• The final set of states: F = {(|w|, k)}.

One can check that the complexity of this algorithmic construction runs in O(|w|2) time.

C.2. Constructions of A2 andA3.

Due to the close similarities in the construction of algorithmsA2 andA3, we dedicate this segment to treat both algorithms

simultaneously. The presence of the swap(.) operation in A3 brings an additional difficulty to this latter, when compared

to A2. Consequently, we choose to treat A3 as a main case. The subtle differences between A2 and A3 will take the form

of notes where these differences will be highlighted.
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In lemma 3.4,A3 designates an algorithm that takes as input a string w ∈ Σ∗, an integer i ∈ [|w|], a probability distribution

P ∈ MARKOV, and outputs a WT Tw,P over Σ∗ × Σ∗
# that computes a seq2seq language that satisfies the following

constraint:

∀(w′, p) ∈ Σ|w| × Σ
|w|
# : f(w′, p) = P (w′|w′ ∈ Lswap(p,i)) (15)

Instead of this formulation, we’ll exploit an equivalent re-expression of the constraint in the algorithmic design obtained

using Bayes’ rule:

∀(p, w′) ∈ Σ|w| × Σ
|w|
# : f(w′, p) =

P (w′) · ILswap(p,i)
(w′)

P (Lswap(p,i))
(16)

The algorithms A2, and A3 will be designed following the same paradigm employed to construct the main algorithm for

solving SHAP(WA,MARKOV). Specifically, it will involve the construction of WAs/WTs that compute languages dependent

on the input instance of the problem. Then, the application of efficiently computable operators over these constructed

WAs/WTs will yield a WT that satisfies the constraint (16).

Besides operators introduced in section 2, namely the product operator, the partition constant operator and the projection

operator, we shall introduce two additional operators over seq2seq languages which will be useful in this context. An

emphasis will be put on the computational efficiency of implementing these operators for the case of seq2seq languages

represented by WTs.

Fix two finite alphabets Σ and ∆.

• The inverse operator: The inverse operator takes as input a language a seq2seq language Σ∗ ×∆∗ f , and returns the

seq2seq language denoted inv(f) such that:

inv(f)(u, s)
def
= f(s, u)

for (u, s) ∈ Σ∗ ×∆∗ such that |u| = |s|.

This operator settles for performing a swap operation of the arguments given to compute the seq2seq language for a given

pair of sequences.

When a seq2seq language over Σ∗ × ∆∗ is computed by a WT T =< α, {Aσ′

σ }(σ,σ′)∈Σ×∆, β >, the WT that computes

the seq2seq language inv(fT ) can be trivially obtained as < α, {Aσ
σ′}(σ′,σ)∈∆×Σ, β >.

• The multiplicative operator: This operator, which we’ll refer to as the multiplicative operator, takes as input a language

f over Σ∗ and a seq2seq language g over Σ∗×∆∗, and outputs a seq2seq language over Σ∗×∆∗, denoted f × g such that

(f × g)(u, s) = f(u) · g(u, s) (17)

for any (u, s) ∈ Σ∗ ×∆∗ such that |u| = |s|.

When the language f and the seq2seq language g given as arguments to this operator are represented by a WA A and a WT

T , respectively, then f × g can be computed by a WT. Moreover, the construction of this WT can be performed in time

polynomial in the size of A and T . The followin proposition provides a proof of this fact:

Lemma C.1. Let A =< α, {Aσ}σ∈Σ, β > be a WA over Σ∗, T =< α′, {Bσ}
σ′∈∆
σ∈Σ , β′ > a WT over Σ∗ ×∆∗.

The WT A× T =< α⊗ α′, {Aσ ⊗Bσ′

σ }
σ′∈∆
σ∈Σ , β ⊗ β′ > over Σ∗ ×∆∗ computes the seq2seq language fA×T .

Proof. Let A =< α, {Aσ}σ∈Σ, β > be a WA over Σ∗, B =< α′, {Bσ}
σ′∈∆
σ∈Σ , β′ > a WT over Σ∗ ×∆∗. Let A × B =<

α⊗ α′, {Aσ ⊗Bσ′

σ }
σ′∈∆
σ∈Σ , β ⊗ β′ > be the constructed WT from A and B.
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Fix a pair (u, s) ∈ Σ∗ ×∆∗ such that |u| = |s|. We have

fA(u) · fT (u, s) = (αT ·

|u|
∏

i=1

Aui
· β) · (α′T ·

|w|
∏

i=1

Bsi
wi
· β′)

= (α ⊗ α′)T ·

|u|
∏

i=1

(Aui
⊗Bsi

wi
) · (β ⊗ β′)

= fA×B(u, s)

where the second equality is an application of the mixed product property of the Kronecker product (proposition A.1).

After introducing the inverse and the multiplicative operator, we are now ready to provide the overall structure of algorithms

A2 and A3.

Fix an input instance w ∈ Σ∗, a pair of integers i ∈ [|w|], and P ∈ MARKOV.

The algorithmA3 will follow three steps:

• Step 1: Construct a DWA, denoted Aw,P , over Σ∗ that computes the language

fAw,P
(w′) =

{

P (w′) if w′ ∈ Σ|w|

0 elsewhere
(18)

• Step 2: Construct a DFT, denoted Ti, over Σ∗ × Σ∗
# that computes the (unweighted) seq2seq language:

fTw,i
(w′, p) = ILswap(p,i)

(w′) (19)

for any pair (w′, p) ∈ Σ∗ × Σ∗
#.

• Step 3: Construct a DWT over Σ∗
#, denoted Aw,i,P that computes a language over Σ∗

# such that:

fAw,i,P
(p) =

1

P (Lswap(p,i))
(20)

for any p ∈ Σ
|w|
# .

Assume we have the WAs Aw,P , Aw,i,P and the WT Tw,i that compute languages/seq2seq languages described in steps 1,

2 and 3, respectively. In light of the equation (16), the seq2seq language computed by the WT

inv(Aw,i,P × inv(Aw,P × Ti))

satisfies the constraint of the seq2seq language g
(1)
w,i,P . This resulting WT represents the output of A3.

•Note. At this stage, a slight difference betweenA2 andA3 lies in steps 2 and 3. For the case ofA2, the pattern swap(p, i)
should be replaced by p in equations (19) and (20), in which case a different DFT and DWT have to be designed to compute

these set of languages/seq2seq languages. Later in this segment, we shall highlight their construction.

It’s left to show how to construct these three machines in polynomial time with respect to the size of the input instance.

The constructions of Aw,P and Tw,i are relatively easy. The construction Aw,i,P is more challenging.

The remainder of this section will be split in three segments, each of which is dedicated to provide the implementation

details of one of the steps of the algorithmic structure outlined above.
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0start 1 2 3
σ : σ

σ : #

σ : σ

σ : #

σ : σ′

σ : σ, σ : #

Figure 1. A DFT Ti that computes the seq2seq language g(w′, p) = ILswap(p,i)
(w′) for i = 3. σ (resp. σ′) refers to any symbol in Σ

(resp. Σ#.

C.2.1. STEP 1: CONSTRUCTION OF Aw,P .

Aw,P refers to the WA that computes the language expressed in 18.

Given a string w ∈ Σ∗ andP ∈ MARKOV. A Markvovian distribution over the finite supportΣ|w| can be easily simulated by

a DWA. The construction consists at maintaining in the state memory of the DWA the position reached so far in the sequence

and the last generated symbol. These two pieces of information are sufficient to simulate a Markovian distribution.

For the sake of the construction, we add a new symbol, denoted < BOS >, that refers to the beginning of a sequence.

The outline of the construction is given as follows:

• The state space: Q = {0, 1, .., |w|} × (Σ∪ < BOS >),

• The initial state: qinit = (0, < BOS >)

• The weight function: Let q = (i, σ) be a state in Q. We denote by σ′ an arbitrary symbol in Σ. We distinguish between

two cases:

– Case 1 ((i, σ) = (0, < BOS >)):

W ((0, < BOS >), σ′) = ((1, σ′), Pinit(σ
′))

– Case 2 (i < |w|):
W ((i, σ), σ′) = ((i+ 1, σ′) = Pi(σ

′|σ))

• The final weight vector: F = {(|w|, σ) : σ ∈ Σ}

A valid path labeled by a sequence w′ ∈ Σ|w| over the constructed DWA is given as:

(0, < BOS >)w′
1(1, w

′
1) . . . (|w| − 1, w′

|w|−1)w
′
|w|(|w|, w

′
|w|)

The weight of this path is equal to Pinit(w
′
1) ·

|w|−1
∏

i=1

Pi(w
′
i+1|w

′
i) · IF

(

(|w|, w′
|w|)

)

= P (w′).

Provided P is polynomial-time computable, this construction runs in O(poly(|w|, |Σ)) time.

C.2.2. STEP 2: CONSTRUCTION OF Ti .

Given an integer i > 0, the goal is to construct a DFT Ti over Σ∗ × Σ∗
# that computes the seq2seq language whose

expression is given in (19).

The construction is relatively easy. The state of the DFT will keep in its memory the current position of the pair of

sequences being parsed up to position i. At a position j < i, the DFT will enable a transition from a state j to a state j + 1
if and only if the current pair of symbols to parse (w′

j+1, pj+1) satisfies the constraint (w′
j+1 = pj+1) ∨ pj+1 = #),. For

the particular case, j = i − 1, where the swap operation needs to be taken into account, a transition is allowed to j + 1
regardless of the pair of symbols (pi, w

′
i) fed to the DFT.

The formal description of a DFT Ti is given in the following. An illustrative example of this construction is given in figure

1.
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• The state space: Q = {0, 1, . . . , i}

• The initial state: qinit = 0,

• The transition function: Let j be a state in Q. We distinguish between three cases:

1. Case 1 (j < i− 1):

δ(j, (σ, σ′)) = j + 1

for (σ, σ′) ∈ Σ× Σ# such that (σ = σ′ ∨ σ′ = #)

2. Case 2 (j = i− 1):

δ(j, (σ, σ′)) = j + 1

for any pair of symbols (σ, σ′) ∈ Σ× Σ#

3. Case 3 (j = i):
w(i, (σ, σ′)) = i

for (σ, σ′) ∈ Σ× Σ# such that (σ = σ′ ∨ σ′ = #)

• The set of final states: Q.

•Note. For the case of the algorithmA2, a DFT that computes the seq2seq language f(p, w′) = ILp
(w′) is a trivial single-

state DFT that settles for testing at each step during the forward run whether the pair of input symbols (σ, σ′) ∈ Σ× Σ#

satisfies the constraint: σ′ = σ ∨ σ′ = #.

C.2.3. STEP 3: CONSTRUCTION OF Aw,i,P .

In the remainder of this segment, we fix a string w ∈ Σ∗, and an integer i ∈ [|w|], and P ∈ MARKOV.

Recall that the DWA Aw,i,P over Σ∗
# is required to compute a language that satisfies the constraint (20). The construction

of the DWA Aw,i,P is more challenging than the construction pf Aw,P and Ti detailed in previous segments. The difficulty

lies in the fact that, unlike the product operation, the set of WAs is not closed under the division operation.

By means of Bayes’ rule, the constraint (20) is explicitly given as

∀p ∈ Σ
|w|
# : fAw,i,P

(p) =
1

Pinit(w′
1 ∈ Lswap(p,i)1)

·
1

|w|−1
∏

j=1

P (w′
j+1 ∈ Lswap(p,i)j+1

|w′
1:j ∈ Lswap(p,i)1:j )

(21)

When trying to construct a DWA that satisfies the formula (21), a difficulty arises by noting that the product terms forming

the right-side of the equation requires maintaining the full history of the input pattern. A construction of a DWA that

naı̈vely simulates the equation (21) would have a state space whose size is O(|Σ||w|).

To circumvent this issue, an intermediary question to raise is concerned with the size of the minimal sufficient information

to hold about a running pattern p1,j to compute the quantity P (w′
j+1 ∈ Lpj+1 |w

′
1:j ∈ Lp1:j ). Under the assumption that

P ∈ MARKOV, one can observe that the minimal sufficient information to retain about the past of a pattern during a forward

run is:

1. The current position in the processed sequence.

2. The last position where a symbol σ ∈ Σ has been encountered during the processing run.

3. The symbol that holds the position described in the previous point.

To gain some intuition on the points discussed above, we provide an illustrative example:

• Example: Let Σ = {a, b} be an alphabet, and P ∈ MARKOV. Let p = a#a#b be a pattern (the support is equal to 5).

Let’s fix as a goal the computation of the quantity P (w ∈ La#a#b). Using Bayes’ rule, we have

P (w ∈ La#a#b) = P (w5 = b|w1 = a ∧ w3 = a) · P (w3 = a|w1 = a) · P (w1 = a)
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Since P ∈ MARKOV, w5 is independent of w1 given w3. Thus,

P (w ∈ La#a#b) = P (w5 = b|w3 = a) · P (w3 = a|w1 = a) · P (w1 = a)

Note that each product term in the right side of the equation depends only the current position, the last position where a

symbol different than # has been encountered and the symbol found in this position.

The points 2 and 3 are formalized by introducing the following two functions:

• The pos(.) function:

pos : Σ∗
# −→ N (22)

p −→ max
i∈{0,1,...,|p|]

{i ∈ N : pi 6= #}

• The sym(.) function:

sym : Σ∗
# −→ Σ∪ < BOS > (23)

p −→

{

< BOS > if pos(p) = 0

ppos(p) elsewhere

• Example: For the alphabet Σ = {a, b} and the pattern p = a#a#. The last position held by a symbol in Σ in p is the

position 3. It is held by the symbol a. Consequently, for this example, we have pos(p) = 3, and sym(p) =′ a′.
For patterns that contain only the symbol ′#′, e.g. p′ = ####, we have pos(p′) = 0 and sym(p′) = BOS.

Next, we shall see how to reformulate the equation (21) using the functions pos(.), and sym(.).

For a given pattern p in Σ∗
#, define the language L̃p over Σ∗ described as follows:

L̃p
def
= {w ∈ Σ|p| : wpos(p) = sym(p)} (24)

By convention, if pos(p) = 0, L̃p is equal to #|p|.

Given that P ∈ MARKOV, we have

P (w′
j+1 ∈ Lpj+1 |w

′
i:j ∈ Lp1:j ) = P (w′

j+1 ∈ Lpj+1 |w
′
1:j ∈ L̃p1:j ) (25)

At this stage, a key observation is that the quantity present in the right-hand side of the equation (25) depends only on P ,

pj+1, pos(p1:j), sym(p1:j), and j. Indeed, by definition of the language L̃p (equation (24)), the language L̃p1:j depends

only on these last three parameters.

To make this dependency appearing explicitly, we shall introduce a definition of a new function G given as follows:

G (pj+1,pos(pi,j),sym(p1:j), j, P )
def
= P (w′

j+1 ∈ Lpj+1 |w
′ ∈ L̃p1:j ) (26)

Using the equality (25), we can rewrite the constraint (21) with this newly introduced notation as:

∀p ∈ Σ
|w|
# : fAw,i,P

(p) =
1

Pinit(w1 ∈ Lswap(p,i)1)
·

1
|w|−1
∏

j=1

G(swap(p, i)j+1,pos(swap(p, i)1:j),sym(swap(p, i)1:j), j, P )

(27)

Toward the stated objective of constructing a deterministic WA over Σ∗
# that computes a language satisfying the constraint

(21), the expression (27) offers a better reformulation of this equation by considering two aspects:
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1. The product terms forming the right-hand side of expression (27) offers a compressed representation of the history of

the processed pattern required to perform next processing operations, by maintaining only the current position in the

sequence, the last symbol different that # encountered during the forward run and its position in the sequence.

2. The functions pos(.) and sym(.) can be easily simulated by a sequential machine that processes sequences from

left-to-right, such as WAs. Specifically, for any pattern p ∈ Σ∗
# and a symbol σ ∈ Σ, we have

pos(pσ) =

{

pos(p) if σ = #

pos(p) + 1 elsewhere

sym(pσ) =

{

sym(p) if σ = #

σ elsewhere

We shall leverage these two insights to construct a DWA that simulates the computation of the expression (27).

Assume for now that the function G can be computed in polynomial time with respect to the input instance (this fact will

be proved later in this segment), a polynomial-time construction of Aw,i,P that satisfies the constraint (20):

• The state space: Q = {0, 1, . . . , |w|}2 × (Σ∪ < BOS >).
The semantics of the elements of a state q = (k, l, σ) ∈ Q correspond to the current position in the sequence, pos(.)
and sym(.), respectively.

• The initial state: qinit = (0, 0, < BOS >)

• The transition function: Let q = (k, l, σ) be a state in Q:

1. Case 1 (k = 0):

– Case 1.1. (σ′ = #)

W ((0, 0, < BOS >),#) =

(

(1, 0, < BOS >),
1

Pinit(w′
1 ∈ L#)

)

– Case 1.2. (σ′ ∈ Σ)

W ((0, 0, < BOS >), σ′) =

(

(1, 1, σ′),
1

Pinit(w′
1 ∈ Lσ′)

)

2. Case 2. (k = i− 1) For any σ′ ∈ Σ#

W ((i − 1, l, σ), σ′) =

(

(i, l, σ),
1

G(#, l, σ, k + 1, P )

)

3. Case 3 (k 6= i− 1 ∧ k ∈ [|w| − 1]):

– Case 3.1. (σ′ = #)

W ((k, l, σ),#) =

(

(k + 1, l, σ),
1

G(#, l, σ, k + 1, P )

)

– Case 3.2. (σ′ ∈ Σ)

W ((k, l, σ), σ′) =

(

(k + 1, k + 1, σ′)) =
1

G(σ′, l, σ, k + 1, P )

)

• The set of final states: F = {|w|} × {0, 1, . . . , |w|} × (Σ∪ < BOS >)

• Note: The case k = i − 1 in the algorithmic construction outlined above corresponds to the case where the swap

operation is taken into account. The adaption of this construction to algorithm A2 consists simply at omitting this case

and considering only cases 1 and 3, where case 3 covers the set k ∈ [|w| − 1].

For illustrative purposes, we shall give next an example of the path followed by a pattern in the constructed DWA.
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• Example. Fix the alphabet Σ = {a, b} and P ∈ MARKOV. Let w = aabab the instance to explain and the symbol for

which we aim at computing the SHAP score is the third symbol, i.e. i = 3.

Let’s consider the pattern p = ##aab. By Bayes’ rule, the probability of generating a sequence that follows the pattern

swap(p, 3) = ###ab is equal to:

P (w′ ∈ L###ab) = P (w′
5 ∈ Lb|w

′
1:4 ∈ L###a) · P (w′

4 = La|w
′
1,3 ∈ L###) · P (w′

3 ∈ L#|w
′
1,2 ∈ L##)

· P (w′
2 ∈ L#|w

′
1 ∈ L#) · P (w′

1 ∈ L#)

= G(b, 4, a, 5, P ) ·G(a, 0, < BOS >, 4, P ) ·G(#, 0, < BOS >, 3, P ) ·G(#, 0, < BOS >, 2, P )

· Pinit(w
′
1 ∈ L#)

G(b, 4, a, 5, P ) holds the semantics of the conditional probability of generating the symbol b at position 5 given that the

symbol a is generated at position 4. Similarly, G(a, 0, < BOS >, 4, P ) holds the semantics of the marginal probability of

generating the symbol a at position 4.

The unique path followed by the pattern p on the DWA constructed above is:

(0, 0, < B0S >) # (1, 0, < BOS >) # (2, 0, < BOS >) a (3, 0, < BOS >) a (4, 4, a) b (5, 5, b)

The weight assigned to this path by the constructed DWA is equal to

1

Pinit(w′
1 ∈ L#)

·
1

G(#, 0, < BOS >, 2, P )
·

1

G(#, 0, < BOS >, 3, P )
·

1

G(a, 0, < BOS >, 4, P )
·

1

G(b, 4, a, 5, P )

By noting that for any σ ∈ Σ# : Pinit(w
′ ∈ L#) = G(σ, 0, < BOS >, 1, P ), the weight of this path is equal to

1
P (w′∈L###ab)

= 1
P (w′∈Lswap(##aab,3))

.

• Computation of the function G.

In order for this constructed DWA to run in time polynomial in the size of its input instance, a necessary and sufficient

condition is that the computation of the function G, can also be performed in polynomial time. We shall prove next that

this last statement is true.

Formally, the computational problem associated to the function G is given as follows:

• Problem: The computational problem G

Instance: σ′ ∈ Σ#, two integers n, m > 0 such that n < m, a symbol σ ∈ Σ∪ < BOS > and P ∈ MARKOV.

Output: Compute G(σ′, n, σ,m, P ) (equation (26)).

For an input instance < σ′, n, σ,m, P >, the quantity G(σ′, n, σ,m, P ) refers to the conditional probability of generating

a symbol in Lσ′ at position m given that the symbol σ has been generated at position n. In essence, the computational

problem G is reduced to the classical problem of inference in Bayesian Networks (Koller and Friedman, 2009). In general,

the exact inference in Bayesian Networks is intractable (Tacettin and Ünlüyurt, 2005). However, in our case, leveraging the

Markovian structure of the probability distribution enables building a tractable solution for the problem using a dynamic

programming approach.

Fix an input instance < σ′, n, σ,m, P > of the problem G. Define the random vector (Xn, . . . , Xm) that takes values over

the set Σm−n. Its joint probability distribution is given as follows:

Q(σn, . . . , σm) = Qinit(σn) ·
m−1
∏

i=n

Pi(σi+1|σi)

such that

Qinit(σn) =

{

1 if σn = σ

0 elsewhere

It’s easy to observe that

G(σ′, n, σ,m, P ) = Q(Xm ∈ Lσ′) (28)
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If σ′ = #, the computation of G(σ′, n, σ,m, P ) is trivial. Indeed, the fact that L# = Σ and Q(Xm ∈ Σ) = 1 entail, by

equation (28) that G(#, n, σ,m, P ) = 1.

For the general case σ′ ∈ Σ, a recursive formula to compute G(σ′, n, σ,m, P ) can be obtained, using Bayes’ rule, as

follows:

G(σ′, n, σ,m, P ) = Q(Xm = σ′) (29)

=
∑

σ̃∈Σ

Q(Xm−1 = σ̃ ∧Xm = σ)

=
∑

σ̃∈Σ

Q(Xm = σ|Xm−1 = σ̃) ·Q(Xm−1 = σ̃)

=
∑

σ̃∈Σ

Pm−1(σ|σ̃) ·G(σ̃, n, σ,m− 1, P )

This last equation provides a recursive formula that enables the computation of G using a dynamic programming approach.

The outline of this approach is given as follows:

• Base case: m = n+ 1

1. If n = 0:

G(σ′, 0, σ,m, P ) = Pinit(σ
′)

2. If n > 0:

G(σ′, n, σ,m, P ) = Pn+1(σ
′|σ)

• General case: m > n+ 1

G(σ′, n, σ,m, P ) =
∑

σ̃∈Σ

Pm−1(σ|σ̃) ·G(σ′, n, σ,m− 1, P )

The complexity of this dynamic programming algorithm is O(m.|Σ|).

D. Proof of lemma 4.3

Lemma 4.3 states the existence of an algorithm that takes as input a d-DNF Φ, runs in O(poly(|Φ|, |Φ|#)), and outputs a

WA that implements the language LΦ. Recall that LΦ is defined as

LΦ = {w ∈ Σ|Φ| : SEQ−1(w) satisfies Φ}

The unweighted language LΦ includes the set of satisfying variable assignments of the boolean variables arranged in a

sequence format.

The structure of the algorithm that performs this task follows two steps:

1. Encode every clause C in the input d-DNF in the form of a DFA. The resulting DFA accepts the language LC .

2. Perform a union operation over all these DFAs to obtain a resulting WA. The key observation at the heart of this step

is that, for the case of disjoint DNFs the union operation can be performed using a basic sum operation over DFAs

constructed in the first step.

Next, we shall provide details of these two steps of the algorithmic construction.
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D.1. Step 1: Encoding clauses as DFAs.

The basic intuition for performing this step is that an equivalent representation of the language accepted by a clause can be

alternatively represented by a pattern of length |p|. On the other hand, a pattern of length |p| can be implemented using a

DFA of size at most |p|+ 1.

Let C = l1∧ . . .∧ lk be a conjunctive clause over N boolean variables. We shall denote by LC the set of satisfying variable

assignments of the clause C arranged in a sequence format.

The construction of a pattern p such that Lp = LC can be performed by scanning the literals of the clause C from left-to-

right. Assume that the clause C doesn’t possess a variable and its negation in its set of literals 7. The algorithmic schema

is given as follows:

1 Initialize a pattern p as #N

2 For each literal li in C:

- If li corresponds to a variable Xk, then set pk = 1
- If li corresponds to the negation a variable X̄k, then set pk = 0

The algorithmic schema ensures that the language of the outputted pattern accepts all and only sequences that satisfy the

constraints enforced by all literals of the clause.

The pattern construction of a clause in a d-DNF Φ as well as its conversion to a DFA can be performed in O(|Φ|) time.

And, the size of resulting DFA is O(|Φ|). Repeating the same operation over all clauses of Φ runs in O(|Φ| · |Φ|#) time.

• Example: The pattern associated to C = X2 ∧ X̄4 ∧ X̄3 over the set of boolean variables {X1, X2, X3, X4, X5} is

#101#.

D.2. Step 2: The union of DFAs representing clauses.

Fix a d-DNF Φ = C1 ∨ . . .∨CM over N boolean variables. Let A1, . . . , AM be a collection of DFAs (outputted by step

1) that accept the languages LC1 , . . . , LCM
, respectively. The main problem of this step is how to exploit DFAs outputted

in the first step to construct a WA A such that ILΦ = fA.

The main intuition at this point is to note that for a d-DNF, ILΦ can be expressed as as a sum of the indicator functions of

{ILCi
}i∈[M ]. Since fAi

= ILCi
for any i ∈ [M ], then fA can be computed as a sum over languages computed by DFAs

. This observation will result into a reduction of the problem of constructing a WA A that computes ILΦ into performing

a sum operation over a collection of DFAs. Fortunately, WAs are closed under the sum operation. Moreover, it can be

computed in polynomial time with respect to the size.

Lemma D.1. Let Φ = C1 ∨ . . . ∨ CM be a disjoint DNF over N boolean variables. We have:

ILΦ =
∑

i∈[M ]

ILCi

Proof. Let Φ = C1 ∨ . . . ∨ CM be a disjoint DNF over N boolean variables. Let w be an arbitrary sequence in {0, 1}n.

Our claim is that ILΦ(w) =
∑

i∈[M ]

ILCi
(w). Note that LΦ =

M
⋃

i=1

LCi
by definition of Φ. Also,

M
⋂

i=1

Ci = ∅ by the disjoint

property of Φ.

• Case 1 (w /∈ LΦ): This implies that ILΦ(w) = 0. On the other hand, w /∈ LΦ and LΦ =
M
⋃

i=1

LCi
implies that

∀i ∈ [M ] : w /∈ LCi
=⇒ ∀i ∈ [M ] : ILCi

(w) = 0 =⇒
M
∑

i=1

ILCi
(w) = 0

• Case 2 (w ∈ LΦ): In this case, ILΦ(w) = 1. On the other hand, LΦ =
M
⋃

i=1

LCi
implies that there exists at least

7Clauses that exhibit this degenerate case can be checked and removed before running the algorithmic schema outlined here.
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one clause Ci such that w ∈ LCi
. This fact combined with the fact that

M
⋂

i=1

Ci = ∅ implies that this clause is

unique. Denote by C∗ this clause. We have ILC∗ (w) = 1. And, ILC
(w) = 0 for any clause C ∈ {Ci}i∈[M ] \ C

∗.

Consequently,
M
∑

i=1

ILCi
(w) = 1.

The result of lemma D.1 implies that a WA A that computes the language ILφ
satisfies:

fA =
M
∑

i=1

ILCi
=

M
∑

i=1

fAi
(30)

For two WAs A1 =< α, {Aσ}σ∈Σβ > and A2 =< α′, {A′
σ}σ∈Σ, β

′ >, the WA whose set of parameters is given as

<

(

α
α′

)

, {

(

Aσ Osize(A1)×size(A2)

Osize(A2)×size(A1) A′
σ

)

}σ∈Σ,

(

β
β′

)

>

where 0n×m is the zero matrix in R
n×m, computes the language fA + fA′ .

The resulting WA runs in O(size(A1) + size(A2)) time, and has size equal to size(A1) + size(A2).

Hence, the construction of the target WA A by performing the sum operation over {Ai}i∈[M ] as outlined by equation

(30) would take O(
M
∑

i=1

size(Ai)) operations. Since the DFAs {Ai}i∈[M ] have size equal to O(|Φ|). Then, the overall

operation runs in O(|Φ| · |Φ|#).
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