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Abstract
Modeling complementary relationships greatly helps recom-
mender systems to accurately and promptly recommend the
subsequent items when one item is purchased. Unlike tra-
ditional similar relationships, items with complementary re-
lationships may be purchased successively (such as iPhone
and Airpods Pro), and they not only share relevance but also
exhibit dissimilarity. Since the two attributes are opposites,
modeling complementary relationships is challenging. Pre-
vious attempts to exploit these relationships have either ig-
nored or oversimplified the dissimilarity attribute, resulting
in ineffective modeling and an inability to balance the two at-
tributes. Since Graph Neural Networks (GNNs) can capture
the relevance and dissimilarity between nodes in the spec-
tral domain, we can leverage spectral-based GNNs to effec-
tively understand and model complementary relationships.
In this study, we present a novel approach called Spectral-
based Complementary Graph Neural Networks (SComGNN)
that utilizes the spectral properties of complementary item
graphs. We make the first observation that complementary
relationships consist of low-frequency and mid-frequency
components, corresponding to the relevance and dissimilar-
ity attributes, respectively. Based on this spectral observa-
tion, we design spectral graph convolutional networks with
low-pass and mid-pass filters to capture the low-frequency
and mid-frequency components. Additionally, we propose a
two-stage attention mechanism to adaptively integrate and
balance the two attributes. Experimental results on four
e-commerce datasets demonstrate the effectiveness of our
model, with SComGNN significantly outperforming existing
baseline models.

Introduction
Complementary item recommendation (Liu et al. 2020; Hao
et al. 2020; Bibas, Shalom, and Jannach 2023) aims to sug-
gest related items to users after they make a purchase in or-
der to stimulate further purchases. To ensure the success of
an e-commerce platform, it is crucial to model the comple-
mentary relationships between items. Complementary rela-
tionships involve items that are relevant yet dissimilar, as
they are purchased together but serve different functions
(e.g., iPhone and AirPods Pro). These properties make com-
plementary relationships more challenging to model than
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Figure 1: Item relationships in recommender systems.

traditional similarity relationships (also known as substi-
tutable relationships). In this study, we focus on comple-
mentary item recommendation, i.e., given a query item, the
goal is to recommend relevant yet dissimilar items to satisfy
users’ needs and encourage joint purchases.

The core attributes of complementary relationships are
relevance and dissimilarity. As shown in Figure 1, for iPhone
and AirPods Pro, they are relevant as digital products un-
der the Apple brand. Their dissimilarity lies in that they are
different products with different functions and appearances.
When recommending complementary products for users, it
is crucial to understand and balance these two characteris-
tics. On one hand, if we emphasize their relevance too much,
it may lead to substitutable item recommendations. On the
other hand, if we emphasize their dissimilarity too much, it
may lead to recommendations for unrelated items.

Hence, researchers have made many efforts on comple-
mentary item recommendations. Some works (McAuley,
Pandey, and Leskovec 2015; Wang et al. 2018; Cen et al.
2019; Liu et al. 2020; Chen et al. 2023) tentatively decou-
ple and focus on complementary relations from item rela-
tionships. However, they ignore the dissimilarity attribute
and only consider the relevance. To further model the dis-
similarity attribute, recent works (Hao et al. 2020; Bibas,
Shalom, and Jannach 2023) model the dissimilarity with cat-
egory mapping networks that consider category diversity.
However, these works still simplify the complementary rela-
tionships since the dissimilarity is not limited to categories.
Without a deep understanding of these two attributes, exist-
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ing works fail to model the essence of complementary re-
lationships, which also leads to an inability to explore the
trade-off between the two properties.

Recent advances show that GNNs can capture the rel-
evance and dissimilarities of nodes from the spectral do-
main (Wu et al. 2022; Tang et al. 2022), which provides a
promising direction to model the complementary relation-
ships for simultaneously capturing the relevance and dissim-
ilarity. Thus, in this work, we model complementary rela-
tionships with spectral-based GNNs. However, we are faced
with two challenges: (1) the lack of a deep understand-
ing of complementary relationships from a spectral per-
spective. Existing spectral-based GNNs do not explore and
adapt to the spectral properties of complementary relation-
ships, resulting in a gap between their spectral properties
and the two attributes; (2) the trade-off between the rele-
vance and dissimilarity attributes. Since the two attributes
are opposites, over-emphasizing either one can lead to inac-
curate complementary item recommendations. Therefore, it
is crucial to strike a balance between these two attributes.

In an attempt to address these challenges, we first analyze
complementary relationships from a spectral perspective on
graphs and observe that the spectrum of the complementary
item graph is mainly composed of low-frequency and mid-
frequency components, which correspond to the relevance
and dissimilarity characteristics respectively. Based on the
observation, we design low-pass and mid-pass graph con-
volutional networks to decouple and extract the correspond-
ing low-frequency relevance and mid-frequency dissimilar-
ity components. To balance the two attributes, we propose
a two-step attention mechanism to adaptively integrate and
balance them. Our contributions are summarized as follows:
• We conduct the first study to gain an understanding of

the spectral properties of complementarity relationships
based on GNNs, which associate the low-frequency and
mid-frequency components with relevance and dissimi-
larity, respectively.

• We design a novel model with spectral-based GNNs and
a two-stage attention mechanism, to decouple, extract
and adaptively balance the low-frequency relevance and
mid-frequency dissimilarity.

• We demonstrate the effectiveness of our proposed frame-
work on four publicly available datasets, which outper-
forms the state-of-art approaches by a margin.

Related Work
In this section, we introduce related work on graph neural
networks and complementary item recommendations.

Graph Neural Networks
GNNs (Wu et al. 2020) have shown great ability in model-
ing graph-structured data. Generally, GNNs can be classified
into two main forms, i.e., spatial-based and spectral-based
ones. Spatial-based GNNs (Hamilton, Ying, and Leskovec
2017; Veličković et al. 2017; Gao, Wang, and Ji 2018;
Zhu et al. 2023) operate in the spatial domain, where the
graph convolution is defined in terms of the neighborhood
structure of each node. Spectral-based GNNs (Bruna et al.

2013; Defferrard, Bresson, and Vandergheynst 2016; Kipf
and Welling 2016; Balcilar et al. 2020; Wu et al. 2022) oper-
ate in the spectral domain, where the graph convolution filter
is defined in terms of the eigenvectors of the graph Lapla-
cian matrix. Since GCN only utilizes low-frequency infor-
mation (Balcilar et al. 2020), to broaden the available fre-
quency bandwidth, recent studies (Balcilar et al. 2020; Wu
et al. 2022) attempt to designs filter functions to incorporate
all the bands of graph signals.

Complementary Item Recommendations
To maximize profit and provide convenience to users, mod-
eling item relationships is a crucial task in recommendation
systems. However, existing works (Wang, Sarwar, and Sun-
daresan 2011; Yao and Harper 2018; Meng et al. 2018) often
oversimplify item relationships as merely being “related”,
disregarding the fact that these relationships can be further
categorized as substitutable or complementary ones. Com-
plementary relationships involve items that are relevant yet
dissimilar, making the modeling of such relationships more
challenging while substitutable items are almost similar. To
tackle this, one straightforward method is frequent pattern
mining and association rules (Han et al. 2007).

Recently, deep learning methods have been applied to
recommend complementary items. Some studies (McAuley,
Pandey, and Leskovec 2015; Wang et al. 2018; Cen et al.
2019; Liu et al. 2020; Wu, Zhou, and Zhou 2022; Chen
et al. 2023) decouple and focus specifically on complemen-
tary relationships from item relationships to provide more
precise recommendations. However, they tend to ignore the
dissimilarity attribute. In response, some works try to con-
sider the dissimilarity attribute. For example, P-companion
(Hao et al. 2020) and ALCIR (Bibas, Shalom, and Jannach
2023) propose category mapping networks to recommend
complementary items and include category diversity.

Since the dissimilarity is related to not only categories
but also other features such as appearances and prices, these
works still oversimplify the dissimilarity and do not have
a deep understanding of the complementary relationships.
Furthermore, their inability to accurately model and decou-
ple the two attributes prevents them from striking a balance
between relevance and dissimilarity.

Problem Statement and Motivation
We first provide preliminaries and definitions of our graph-
based complementary item recommendation problem.

Notations and Problem Definition
Let G = {V,X, E} denotes the complementary item graph,
where V is the set of nodes {v1, ..., vN} and each node is
an item. E = {eij} is the set of undirected edges. Fea-
ture matrix X ∈ RN×d is made of d−dimensional features
of N nodes. Let A ∈ RN×N denotes the adjacency ma-
trix. Aij = 1 if vi and vj are complementary; otherwise,
Aij = 0. Let D ∈ RN×N be the diagonal degree matrix
with Dii =

∑
j Aij . The normalized graph Laplacian ma-

trix L = I−D− 1
2AD− 1

2 , where I is an identity matrix. With



Dataset Appliances Grocery Toys Home
# items 804 38548 24638 75514
# edges 8290 642884 614730 776766
Shigh 0.3408 0.4034 0.3150 0.4169

Table 1: Statistics and Shigh of four datasets.
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Figure 2: Spectral energy distribution of Appliances dataset.

these notations, we formally define the problem of graph-
based complementary item recommendation as:

Problem 1. For a complementary item graph G =
{V,X, E}, where nodes denote items and edges denote com-
plementary relationships, we aim to predict the probability
of an edge ei,j when given two items vi and vj , and find
items being complementary accordingly.

Observations on Real-world Datasets
To observe the spectral properties of the complementary
item graphs, we first introduce two metrics (Tang et al.
2022), i.e., spectrum and high-frequency area.

(1) The spectrum visualizes frequency distribution in
spectral domains. It is plotted using eigenvalues λ as the
x-axis and the spectral energy as the y-axis. The eigen-
values λ = {λ1, λ2, ..., λN} and the corresponding eigen-
vectors U = (u1,u2, ...,uN ) can be obtained by the de-
composition of the normalized Laplacian matrix L, where
eigenvalues λ also denote the frequencies of the graph. The
spectral energy x̂2

k/
∑N

i=1 x̂
2
i is based on the graph Fourier

transform x̂ = (x̂1, x̂2, ..., x̂N )T = UTx, where x =
(x1, x2, ..., xN )T ∈ RN denotes one dimension of features
from N nodes. Since λ ranges from 0 to 2, we define λ close
to 2 as high frequencies, λ close to 0 as low frequencies, and
λ close to 1 as medium frequencies. Due to the huge compu-
tational effort of eigenvalue decomposition, only small-scale
graph datasets can be drawn for spectrum plots.

(2) The high-frequency area Shigh denotes the area of the
high-frequency region in the spectrum. It measures the area
between the accumulated spectral energy curve (the solid
lines in Figure 2) and the curve with a y-value of 1 (the
dashed lines in Figure 2). Thus, Shigh is within [0, 2]. Pre-
vious work (Tang et al. 2022) shows that Shigh can be ob-

tained by Shigh =
∑N

k=1 λkx̂
2
k∑N

k=1 x̂2
k

= xTLx
xTx

. There is no need
for eigenvalue decomposition, making it feasible for large-
scale datasets. The larger the Shigh is, the more the mid- and
high-frequency components are.

Based on the two metrics, we conduct our analysis on
four real-world datasets obtained from Amazon (He and
McAuley 2016), i.e., “Appliances”, “Grocery and Gourmet
Food” (abbreviated as Grocery), “Toys and Games” (Toys),

and “Home and Kitchen” (Home). The details of the datasets
can be found in the experiment section. “Appliances” is a
small-scale dataset, while the others are large-scale datasets.
In each dataset, nodes represent items and edges represent
complementary relationships.

We draw the spectrums for the small-scale dataset and
compute high-frequency area Shigh for all datasets. Since
both the spectrum and Shigh are obtained based on a sin-
gle feature dimension, we randomly select two dimensions
to plot the spectrum in Figure 2 and calculate the average
value of all feature dimensions to obtain Shigh in Table 1.
In Figure 2, the histogram denotes the spectral energy distri-
bution and the solid curve denotes the accumulated spectral
energy distribution.

From Figure 2 and Table 1, we can conclude that the
complementary item graph is mainly composed of low-
frequency and mid-frequency components in the spectral do-
main. In detail, (1) from Figure 2, the spectrum shows that
λ with low and medium values have larger spectral ener-
gies, which means the complementary relationship is com-
posed of low-frequency and mid-frequency components;
and (2) from Tabel 1, the high-frequency area Shigh of all the
datasets fall between 0 and 1, indicating that similar to the
Appliances dataset, the spectrum of the other three datasets
are mainly composed of low-frequency and mid-frequency
parts. Additionally, as Shigh is below 0.5, the low-frequency
component is greater than the mid-frequency component.

Since the more similar a node is to its neighbors in the
spatial domain, the lower the corresponding frequency com-
ponent is in the spectral domain (Wu et al. 2022; Bo et al.
2021), we can regard the low-frequency component as the
relevance attribute and the mid-frequency component as the
dissimilarity attribute. To further verify it, we conduct a case
study experiment in the experiment section. In this way, we
bridge the gap between the properties of the complementary
relationship and the spectral characteristics.

Methodology
Based on our observations, we propose a novel framework
for complementary item prediction by modeling the two
attributes in the spectral domain. As illustrated in Figure
3, the framework consists of three key modules: spectral-
based GCN filters, a two-stage attention mechanism, and
contrastive learning optimization. (1) To model the low-
frequency relevance and mid-frequency dissimilarity, we de-
couple and extract them using specialized GCN filters. (2)
Integrating these attributes poses a challenge, as manually
determining their importance is difficult. Thus we introduce
a two-stage attention mechanism that adaptively integrates
the attributes. It utilizes a pairwise attention mechanism to
determine the significance of relevance and dissimilarity be-
tween by item pairs, followed by a self-attention mechanism
that integrates the attributes independently. (3) Finally, we
optimize our model using contrastive learning. In the fol-
lowing sections, we provide details of each module.

Spectral-based GCN Filters
To model the low- and mid- components of the complemen-
tary item graph, we decouple the low-frequency relevance
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Figure 3: The overall framework of our proposed model SComGNN.

and mid-frequency dissimilarity using specialized GCN fil-
ters. We will first introduce the unified form of spatial-
based and spectral-based GCNs. Based on it, we then design
spectral-based low-pass and mid-pass filters and turn them
into spatial forms for implementation.

Unified form of Spatial-based and Spectral-based GCNs
GCNs can be explored from both spatial and spectral domain
perspectives. Though the two approaches start from different
domains, they can be interchanged (Balcilar et al. 2020). The
GCN propagation can be formulated as:

Hl+1 = σ(

K∑
k=1

CkH
lWl

k), (1)

where σ is the activation function, K is the number of filters,
Hl denotes the node representation at layer l, and Wl

k is a
learnable weight matrix of the filter k at layer l. Here Ck

is the graph convolution kernel in the spatial domain, which
can be formulated in the spectral domain as:

Ck = Udiag(Fk(λ))U
T , (2)

where U and λ are the eigenvectors and the eigenvalues of
the normalized graph Laplacian matrix L. Here diag repre-
sents the diagonal matrix with specified elements. Fk(λ) is
the graph convolutional filter in the spectral domain and is a
function with λ as the independent variable. Eq. (2) can also
be formulated as:

Fk(λ) = diag−1(UTCkU). (3)

The key to the spatial-based GNNs is the design of Ck,
while the key to the spectral-based GNNs is the design of
Fk(λ). With Eq. (2) and Eq. (3), these two convolutional
kernels can be converted to each other. Since spatial-based
GNNs are generally easier to understand and implement
than spectral-based ones, Eq. (2) inspires us to design the
spectral convolutional kernel Fk(λ) first, and then convert it
to a spatial form to implement it, like what existing works
do (Kipf and Welling 2016; Wu et al. 2022).

Spectral-based Filters Existing spectral-based GNNs
(Bruna et al. 2013; Defferrard, Bresson, and Vandergheynst
2016; Kipf and Welling 2016) design different Fk(λ) to
obtain different GNN models. Since complementary item
graphs are mainly composed of low and mid-frequency com-
ponents in the spectral domain, our goal is to design a
low-pass and a mid-pass GCN filter to extract the low and
mid-frequency components, respectively, and filter out other
components. As the convolution of the spatial domain is
equal to the product of the spectral domain, the larger the
amplitude value, the more of the corresponding frequency
component is retained. To avoid complex calculations, we
design the spectral convolution kernel of the low-pass filter
as a linear decreasing function of λ:

Flow(λ) = 1− λ/2. (4)

With Eq. (2), we can turn it into a spatial form:

Clow = (Ã+ I)/2, (5)

where Ã = D−1/2AD−1/2, denoting the normalized adja-
cency matrix. Linear functions can be implemented as high-
pass or low-pass in increasing or decreasing form, however,
it is not possible to implement a mid-pass filter, where the
mid-frequency component is retained while others are fil-
tered out. Therefore, we use the quadratic function of λ to
realize the spectral convolution kernel of the mid-pass filter:

Fmid(λ) = −(λ− 1)2 + 1. (6)

With Eq. (2), it can also be formulated in the spatial domain:

Cmid = I− Ã2. (7)

To better understand the low-pass and mid-pass filters, we
look at both the spectral and spatial domains. For the spectral
domain, we plot the spectral convolutional kernels Flow(λ)
and Fmid(λ) (i.e., the spectrums) in Figure 4. As shown in
the spectrums, the low-pass filter retains the low-frequency
part and filters out other parts while the mid-pass filter re-
tains the middle-frequency part and filters out other parts.
For the spatial domain, with Eq. (5) and Eq. (7), our low-pass
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Figure 4: Spectrums of low-pass and mid-pass GCNs.

filter aggregates a node’s self-information with its neighbor-
hood information while the mid-pass filter obtains the dif-
ference between a node’s self-information and its two-hop
neighborhood information. Therefore, we can conclude that
the low-pass filter extracts the relevance between nodes and
neighbors, while the mid-pass filter extracts the dissimilarity
between nodes and neighbors.

With the low-pass and mid-pass GCN filters, we can ex-
tract the low and mid-frequency components from the com-
plementary item graph, which correspond to the relevance
and dissimilarity attributes, respectively. We formulate it as:

Hl
mid = Relu(CmidH

l−1
midW

l−1), (8)

Hl
low = Relu(ClowH

l−1
lowW

l−1), (9)

where Hl
low and Hl

mid are the low-frequency and mid-
frequency node representation matrix at layer l, Wl−1 is the
weight matrix. Note that, H0

low = H0
mid = X.

Tow-stage Attention Mechanism
Since items with complementary relationships are relevant
yet dissimilar, it is challenging to determine manually which
attribute is more crucial when making complementary re-
lationship predictions. Even for the same item, the signif-
icance of these two attributes may differ in different item
pairs. To tackle this problem, we propose a two-stage at-
tention mechanism to merge the two attributes adaptively,
which is composed of pairwise attention in item pairs and
self-attention independently.

Pairwise Attention Mechanism. We first adopt a pair-
wise attention mechanism to integrate the low- and mid-
frequency components of items in pairs. For example, given
an item pair (vi, vj), item vj determines the proportion of
low-frequency relevance and mid-frequency dissimilarity of
item vi, and vice versa. With the low-pass and mid-pass
GCN filters, we obtain the low and mid-frequency item rep-
resentation matrix HL

low and HL
mid, where L is the depth of

propagation layers. For item vi, we denote its embeddings
as hL

if
, where f ∈ {low,mid}. With these notations, we

first introduce how the low-frequency component of item vj
selects and integrates the two embeddings of item vi:

zilow =
∑
f

αjlow,ifh
L
if , αjlow,if =

exp(hL
jlow

T
hL
if
)∑

f exp(h
L
jlow

T
hL
if
)
,

(10)

where hL
jlow

denotes the low-frequency embedding of item
vj . Here αjlow,if denotes the proportion of low-frequency
and mid-frequency embeddings of item vi. zilow denotes

the integrated representation of item vi decided by low-
frequency component of item vj .

Also, the two embeddings of item vi can be selected and
integrated by the mid-frequency component of item vj :

zimid =
∑
f

αjmid,ifh
L
if , αjmid,if =

exp(hL
jmid

T
hL
if
)∑

f exp(h
L
jmid

T
hL
if
)
,

(11)

where hL
jmid

denotes the mid-frequency embedding of item
vj . Here αjlow,if denotes the proportion of two embeddings
of item vi. zimid

denotes the integrated representation of
item vi decided by mid-frequency component of item vj .

By the pairwise attention mechanism with item vj , we ob-
tain the integrated embedding zilow and zimid

of item vi.
Here the low and mid in the subscripts no longer denote the
frequency component in item vi, but rather which frequency
component of item vj it is integrated from. For item vj in
pair (vi, vj), we can do the same pairwise attention step to
obtain zjlow and zjmid

.

Self-attention Mechanism. After the pairwise attention
step, the low and mid-frequency components of items vi and
vj have been selected and integrated by each other. Next, we
use the self-attention mechanism to further adaptively inte-
grate the low and mid-frequency components by themselves.
Similar to the above pairwise attention step, two embeddings
of item vi can be selected and integrated by zilow :

z̃ilow =
∑
f

βilow,if zif , βilow,if =
exp(zilow

T zif )∑
f exp(zilow

T zif )
,

(12)

where βilow,if denotes the proportion of two embeddings of
item vi, z̃ilow denotes the further integrated representation
of item vi by zilow after the self-attention step. Also, the two
embeddings of vi can be selected and integrated by zimid

:

z̃imid =
∑
f

βimid,if zif , βimid,if =
exp(zimid

T zif )∑
f exp(zimid

T zif )
,

(13)

where βimid,if denotes the proportion of two embeddings
of vi, z̃imid

denotes the further integrated representation of
item vi decided by zimid

.
By the self-attention mechanism, we obtain the further

integrated embedding z̃ilow and z̃imid
of item vi. Finally,

we concat the two embeddings and turn them into a low-
dimensional representation:

ẑi = ([z̃ilow ⊕ z̃imid
])W, (14)

where W ∈ R2d′×d′
and d′ is the embedding size. For item

vj , we do the same step to obtain ẑj .

Contrastive Learning Optimization
We treat the graph complementary item recommendation as
a link prediction problem and follow the principle of con-
trastive learning (He et al. 2020) to construct positive and
negative samples for each item, which encourages the model
to pull together items that are complementary and push apart



Method Datasets Appliances Toys Grocery Home
Metric HR@5 HR@10 NDCG HR@5 HR@10 NDCG HR@5 HR@10 NDCG HR@5 HR@10 NDCG

Baselines

GIN 0.4347 0.6226 0.4279 0.5242 0.7408 0.4866 0.4344 0.6107 0.4425 0.4843 0.6552 0.4681
GraghSage 0.4402 0.6574 0.4215 0.5313 0.7514 0.4863 0.6255 0.8000 0.5359 0.7272 0.8417 0.6061
Popularity 0.2040 0.3208 0.2906 0.1809 0.2816 0.2914 0.2556 0.3690 0.3392 0.2263 0.3505 0.3223

DCF 0.3630 0.5366 0.3817 0.4876 0.6714 0.4661 0.5991 0.7574 0.5326 0.6846 0.7798 0.6015
P-Companion 0.3545 0.5414 0.3759 0.4098 0.6017 0.3923 0.4943 0.6774 0.4152 0.5847 0.7220 0.5145

ALCIR 0.3754 0.5394 0.3792 0.3930 0.5959 0.3994 0.5067 0.6892 0.4614 0.5411 0.6885 0.4826
Ours SComGNN 0.4919 0.7127 0.4377 0.6561 0.8589 0.5501 0.7207 0.8565 0.5959 0.7943 0.8789 0.6610

Table 2: Performance comparison on four datasets.

those that are not. For each item, positive samples are its
complementary items and negative samples are randomly
sampled from nodes that do not have links to it. The loss
function can be formally defined as :

L = −
∑

ei,+∈E
log

exp(ẑTi ẑ+/τ)∑M
j=0 exp(ẑ

T
i ẑj/τ)

, (15)

where ẑ+ is the positive sample, M is the number of the
negative items, and τ is a temperature hyperparameter. Note
that, the value of ẑi is not fixed, instead, it changes as the
item pair changes. In the inference phase, we use the rep-
resentations generated from the trained model to predict
whether two items are complementary. The prediction score
can be computed by:

si,j = Sigmoid(ẑTi ẑj). (16)

The algorithm and detailed time complexity analysis can
be found in the supplementary files, where the time com-
plexity of spectral-based GCN filters and the two-stage at-
tention mechanism is O(3|E|) and O(8|d′|), respectively.

Experiments
In this section, we carry out comprehensive experiments to
demonstrate the effectiveness of our method.

Experimental Setup
Datasets Following (Liu et al. 2020; Hao et al. 2020;
Bibas, Shalom, and Jannach 2023), we use publicly avail-
able benchmark datasets from Amazon. We consider “also-
bought” as complementary relationships, and our task is
to realize the link prediction on the complementary item
graphs. We select four datasets: “Appliances”, “Grocery”,
“Toys”, and “Home”, and use the categories and price of
each item as features. For categories, we choose BERT
(Vaswani et al. 2017) as the pre-trained model to obtain the
category embedding, and for the price, we discretize the con-
tinuous price to bins using equal-depth binning. Similar to
previous work (Liu et al. 2020), for each item, we randomly
sample one edge for constructing the test data, one for the
validation data, and use the remaining edges as the training
data. The statistics of the datasets are shown in Table 1.

Baselines and Implementation. The baseline models can
be divided into two groups: traditional GNNs and comple-
mentary item recommendation models. The first group in-
cludes GIN (Xu et al. 2018) and GraphSage (Hamilton,

Ying, and Leskovec 2017). The second group includes Pop-
ularity (Bibas, Shalom, and Jannach 2023), DCF (Galron
et al. 2018), P-Companion (Hao et al. 2020), and ALCIR
(Bibas, Shalom, and Jannach 2023). We exclude DecGCN
(Liu et al. 2020) and EMRIGCN (Chen et al. 2023) from
our comparison since they incorporate substitutable relation-
ships which are beyond the scope of this paper, as our focus
is on complementary item recommendations. For our imple-
mentation, we set the embedding size and network layers of
both two GCN filters to 16 and 1, respectively. We evaluated
the performance using two metrics: Hit Rate (HR@K) and
NDCG (Normalized Discounted Cumulative Gain), with K
set to 5 and 10. Detailed descriptions of baselines and im-
plementations can be found in the supplementary files and
our code is available1.

Overall Performance
We present our experimental results in Table 2, including the
results of our model and baselines on four datasets, where
the boldfaced and underlined values represent the best and
the second-best performance, respectively. Based on the re-
sults, we can make the following observations:

First, SComGNN outperforms all other models on all
datasets, making it a state-of-the-art model for complemen-
tary item recommendation. Specifically, for the HR@10
score, SComGNN outperforms the best baseline model by
7.8%, 14.3%, 13.3%, and 4.4% on the four datasets, respec-
tively. On the other two metrics (i.e., HR@5 and NDCG),
SComGNN achieves a similar improvement in performance.
The results demonstrate the importance of leveraging both
low-frequency relevance and mid-frequency dissimilarity to
enhance performance.

Additionally, we observe that traditional graph-based
models can also perform well, even without custom modi-
fications for complementary relationships. In fact, some of
these models outperform non-graph-based complementary
item recommendation models. This highlights the power-
ful capabilities of GNNs in modeling relationships. Com-
pared to GIN, Graphsage’s strong performance comes from
the operation on neighbor node sampling, which reduces its
reliance on low-frequency components.

Ablation Study
We carry out ablation experiments to investigate the con-
tributions of three key modules, i.e., the low-pass GCN fil-

1https://github.com/luohaitong/SComGNN



Dataset Appliances Toys Grocery Home
Metric HR@10 NDCG HR@10 NDCG HR@10 NDCG HR@10 NDCG
Ours 0.7127 0.4377 0.8589 0.5501 0.8565 0.5959 0.8789 0.6610
w/o l 0.1855 0.2457 0.1365 0.2236 0.2194 0.2560 0.1745 0.2375

w/o m 0.6420 0.4235 0.7186 0.4907 0.7839 0.5389 0.8387 0.6239
w/o a 0.6766 0.4195 0.8228 0.5149 0.8034 0.5330 0.8626 0.6223

Table 3: The ablation study performance.
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Figure 5: Hyperparameter sensitivity evaluation.

ter, the mid-pass GCN filter, and the two-stage attention
mechanism. SComGNN w/o l is the variant without the low-
frequency GCN filter and the two-stage attention mecha-
nism, thus the model only obtains the mid-frequency rep-
resentation. SComGNN w/o m is the variant without the
mid-frequency GCN filter and the two-stage attention mech-
anism, thus the model only obtains the low-frequency repre-
sentation. SComGNN w/o a is the variant without the two-
stage attention mechanism thus the mid-frequency and low-
frequency representations are simply concatenated. Due to
similar trends and page limitations, we only show results on
two metrics in Table 3, and complete results on three metrics
can be found in supplementary files.

In Table 3, we can observe that (1) SComGNN achieves
the best performance among the four models, indicating
the collective importance of all three modules. (2) Com-
pared to SComGNN w/o l, ScomGNN w/o m achieves
better performance, which verifies our observations that
the low-frequency component is greater than the mid-
frequency component. (3) In some cases, the performance of
SComGNN w/o a can even be inferior to that of SComGNN
w/o m. This indicates although the mid-frequency represen-
tation is valuable, its integration needs to be more efficient.

Hyperparameter Analysis
We investigate the impact of two hyperparameters on the
performance of our model, i.e., the depth of low-pass and
mid-pass GCN layers and the embedding size. Due to simi-
lar trends and page limitations, we only present the NDCG
results in Figure 5, and complete results can be found in
supplementary files. We can make some conclusions. First,
for the depth of GCN layers, the performance may decrease
as the depth of network layers increases. This is because
our model aggregates structural information from different
perspectives so that a one-layer network can perform well.
Next, for the embedding size, 16 is the most appropriate
value. Increasing the embedding size to 32 and 64 not only
does not necessarily improve the model performance but
also increases the model complexity and training time. Also,
reducing the embedding size to 8 or 4 results in a significant
drop in performance, indicating the importance of learning
rich and expressive feature representations.
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Figure 6: Examples of complementary recommendation re-
sults with different frequency components.

Case Study
To assess the impact of low and mid-frequency compo-
nents in the production environment, we compare the per-
formance of three models: SComGNN w/o m, SComGNN
w/o l, and SComGNN. Figure 6 shows the TOP-3 comple-
mentary items recommended for “Instant Coffee”. In the
recommendations solely based on the low-frequency com-
ponents, items are all coffee, which is strongly similar to
the query item. Conversely, with only the mid-frequency
components, items appear to have a low correlation to the
query item. However, with both the low-frequency and mid-
frequency components, a diverse range of items, including
coffee, sugar, and cocoa, are recommended. The inclusion
of sugar as a flavoring for coffee, and the presence of co-
coa alongside coffee as distinct but related beverages, illus-
trate our ability to capture both relevance and dissimilarity.
This outcome highlights the crucial roles played by the low-
frequency component in representing relevance and the mid-
frequency component in representing dissimilarity, both of
which are essential for complementary relationships.

Conclusion
In this paper, we bridge the gap between spectral properties
and attributes of complementary relationships. Our analy-
sis reveals that complementary item graphs primarily con-
sist of low-frequency and mid-frequency components in the
spectral domain, representing relevance and dissimilarity at-
tributes. We propose GCN filters to extract the two com-
ponents and employ a two-stage attention mechanism for
adaptive integration. Experiments on four publicly avail-
able datasets demonstrate the effectiveness of our theoreti-
cal analysis and the proposed method. In the future, more
effective GCN filters and integration approaches of two fre-
quency components deserve to be explored.
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