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Abstract

Existing Referring Image Segmentation (RIS) methods
typically require expensive pixel-level or box-level annota-
tions for supervision. In this paper, we observe that the
referring texts used in RIS already provide sufficient in-
formation to localize the target object. Hence, we pro-
pose a novel weakly-supervised RIS framework to formu-
late the target localization problem as a classification pro-
cess to differentiate between positive and negative text ex-
pressions. While the referring text expressions for an image
are used as positive expressions, the referring text expres-
sions from other images can be used as negative expressions
for this image. Our framework has three main novelties.
First, we propose a bilateral prompt method to facilitate the
classification process, by harmonizing the domain discrep-
ancy between visual and linguistic features. Second, we
propose a calibration method to reduce noisy background
information and improve the correctness of the response
maps for target object localization. Third, we propose a
positive response map selection strategy to generate high-
quality pseudo-labels from the enhanced response maps,
for training a segmentation network for RIS inference. For
evaluation, we propose a new metric to measure localiza-
tion accuracy. Experiments on four benchmarks show that
our framework achieves promising performances to existing
fully-supervised RIS methods while outperforming state-of-
the-art weakly-supervised methods adapted from related ar-
eas. Code is available at https://github.com/fawnliu/TRIS.

1. Introduction

Referring Image Segmentation (RIS) aims to segment a
target object from an input image according to the input lin-
guistic query. It has many applications such as text-based
image editing [8, 10], human-computer interaction [58, 64],
E-commercial search engine [76, 71].

*Joint first authors. †Joint corresponding authors.

Q: “a woman wearing the cream color dress and cutting cake with a man”

(a) Image (b) WWbL [51] (c) LAVT [65]

(d) Ours (Step-1) (e) Ours (Step-2) (f) GT

Figure 1. Given an input image and a query expression (a), our
method leverages a text-to-image response optimization process
to locate the target object in the first step (d), and then produce the
final map using a segmentation network in the second step (e). Our
method outperforms the weakly-supervised method [51] (b) and
achieves competitive result compared to the state-of-the-art fully-
supervised RIS method [65] (c). Note that our method is trained
using only text expressions, which are already available.

Hu et al. [22] propose the first RIS method, which sepa-
rately extracts visual and linguistic features and then con-
catenates them to predict the segmentation map. Subse-
quently, many methods are proposed to fuse multi-modal
features for RIS in different ways, e.g., with unidirec-
tional fusion [66, 37] and bidirectional fusion [23, 15] using
CNNs, and long-range cross-modal modeling [65, 28] us-
ing transformers. However, almost all existing RIS methods
rely on the fully-supervised learning scheme to produce ac-
curate results, which requires time-consuming and labour-
intensive pixel-level annotations. (For example, skilled an-
notators may need an average of 79s [44] to label a polygon-
based instance mask for an image in MS COCO [33].) Re-
cently, Feng et al. [16] propose to use bounding box anno-
tations for weakly-supervised RIS, but it is still costly for
labeling large-scale RIS datasets (on average 7s to annotate
a single bounding box). Hence, there is still a need to design
RIS models with cheaper supervision signals.

Besides using bounding boxes, there are also other kinds
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of weak supervision signals studied in other computer vi-
sion tasks, including scribbles [70, 69], points [18] and class
labels [57, 47]. However, scribbles and points still require
and are sensitive to human involvement. Although class la-
bels work well for other visual tasks, e.g., salient object de-
tection [57], they are unsuitable for RIS due to their lack of
instance information.

We observe that the input referring texts used in the RIS
task have already provided distinctive descriptions, which
describe one or several properties, of the target object that
can be used to locate the object. Inspired by this, we
propose a novel weakly-supervised RIS framework, which
learns to locate the target objects by learning how to classify
positive and negative texts, where the positive texts are the
referring texts that are used to describe the corresponding
objects of the input images while the negative texts are the
referring texts that describe objects from other images. Our
framework has three main technical novelties. First, to fa-
cilitate classification process, we propose a bilateral prompt
method to harmonize the modal discrepancy between visual
and linguistic features. Second, we propose a calibration
method that consists of a foreground enhancement process
and a background suppression process to enhance the de-
rived response maps for target object localization. Third,
we propose a novel positive response map selection strat-
egy to derive high-quality pseudo-labels from the enhanced
response maps, which are used to train a segmentation net-
work for RIS inference. In addition, we propose a new met-
ric to evaluate localization accuracy, which can reduce in-
box errors of the existing pointing-game accuracy metric.

As shown in Fig. 1, our method can locate the target ob-
ject and produce the segmentation map accurately. Even
though it is trained using only text expressions, it produces
a comparable result to the fully-supervised method [65]. In
summary, this paper has the following main contributions:

• We propose a novel weakly-supervised RIS framework
that is supervised only by the readily available refer-
ring texts and does not require any extra annotations.

• Our framework has three main technical novelties.
First, we propose a bilateral prompt method to har-
monize the visual and linguistic modal discrepancy.
Second, we propose a calibration method to improve
the correctness of the response maps for localization.
Third, we propose a response map selection strategy to
generate high-quality pseudo labels for the segmenta-
tion of the target objects.

• We propose a new metric for the evaluation of localiza-
tion accuracy. Extensive experiments on four bench-
marks show that our framework can produce promis-
ing results compared to previous fully-supervised RIS
methods and outperforms existing weakly-supervised
baselines adapted from related tasks.

2. Related Works
Referring Image Segmentation detects and segments tar-
get objects according to the input text expressions. Hu et
al. [22] propose the first RIS method with a CNN model.
Many follow-up methods are then proposed, mainly fo-
cusing on addressing the linguistic and visual feature fu-
sion problem. Some methods adopt recurrent refinement
[7, 30, 35] or dynamic filters [42, 9, 26] to fuse visual
and linguistic features. To capture long-range dependen-
cies between two modalities, several methods explore atten-
tion mechanisms [66, 23, 15, 37, 52, 40, 67, 60, 24, 63] or
transformer-based architectures [14, 29, 28, 65, 59, 75, 36].

However, all these methods are fully-supervised. Train-
ing them requires pixel-level annotations, which are time-
consuming and labor-intensive to obtain. Recently, Feng et
al. [16] propose the first weakly-supervised RIS method,
which is based on bounding box annotations. Although
bounding boxes are cheaper to annotate, they still require a
significant amount of effort on a large-scale dataset. In this
paper, we propose a weakly-supervised method that uses
only the available text expressions for training.

Weakly-Supervised Learning tries to reduce labelling ef-
forts with different kinds of weak labels, e.g., bounding
boxes [11, 31], scribbles [70, 69], points [18], class la-
bels [72, 46, 57, 3, 61, 54, 53], and text expressions [51,
12, 19, 38, 56, 25, 2, 5], for various computer vision tasks.

Among these proposed weak labels, image-level class
labels are very popular, as they provide high-level seman-
tic information but are relatively cheap to label. The above
methods propose different class activation map generation
processes to locate the objects, e.g., global average pool-
ing [72], global max pooling [46], global smoothing pool-
ing [57], and normalized global weighted pooling [3]. Xie
et al. [61] propose to further use background class labels to
improve the quality of maps. While also using text input,
class labeling does not work in our task due to the lack of
instance-level information.

Language expressions are commonly used as weak su-
pervision signals in the weakly-supervised visual grounding
(WSG) task (i.e., detecting the target objects with bounding
boxes according to the input expressions). However, most
WSG methods [12, 19, 38, 56, 25, 55] resort to additional
pre-trained object detectors to produce a set of proposals
and then select the one with the highest confidence score by
matching visual features with phrase features. To avoid the
dependence on pre-trained detectors, Arbelle et al. [5] pro-
pose a self-supervised method to train the network by ran-
domly blending the images according to the expressions.
Shaharabany et al. [51] compute the relevancy heatmaps
and treat them as GTs to supervise the generated response
maps. Akbari et al. [2] propose a posterior probability-
based multi-modal loss to guide the network to predict cor-
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Figure 2. Our weakly-supervised RIS framework has two steps. Step-1: It learns to classify input text expressions, and uses the positive
text expression to help localize the target object to produce response maps. Step-2: It feeds the pseudo-labels derived from the response
maps to train a segmentation network for RIS inference. We propose a bilateral prompt method to harmonize the multi-modal discrepancy
and a calibration method to enhance the response maps in Step-1. We propose a positive response map selection strategy in Step-2 to help
select the best response maps as pseudo-labels.

relation scores for the related image-sentence pairs.
While these methods are close in spirit to our work, they

only detect the target objects with bounding boxes. Our ex-
periments demonstrate that it is non-trivial to obtain pixel-
wise segmentation maps from their bounding-box results.
In contrast, our method learns to detect the target objects in
a pixel-wise manner via a text-to-image optimization pro-
cess, which allows accurate localization of the target.

3. Our Framework
The main objective of the weakly-supervised RIS task is

to establish a pixel-wise association between the visual con-
tent and the input referring expressions without using pixel-
level annotations. We note that the input referring expres-
sions inherently possess discriminative information pertain-
ing to the localization of the target objects or regions. In
light of this observation, our framework is designed to learn
to classify positive and negative expressions of each input
image, through which it also learns to localize the target ob-
ject in the image as described by the positive expressions.
The positive expressions are the referring text expressions
that are used to describe the target object of the input image,
while the negative expressions are the referring text expres-
sions taken from other images. Our classification process
involves the modelling of text-to-image responses, which
can learn to associate the visual contents in the input image
with the positive expressions.

Fig. 2 shows our weakly-supervised RIS framework,
which has two steps. The first step models the text-to-image
response of the classification process to locate the target
object as specified by the text expressions. We propose a
bilateral prompt method in this step to harmonize the dis-

crepancy between the visual and linguistic features, and a
calibration method to enhance the completeness and cor-
rectness of the positive response maps. The second step
leverages the response maps from the first step to produce
pseudo labels. These pseudo labels are then used to train
a segmentation network for RIS inference. A positive re-
sponse map selection strategy is proposed to select the best
response maps for pseudo-label generation.

3.1. Text-to-Image Response Modeling

We first explain how we model text-to-image responses,
which are used to localize the target objects as specified by
the expressions in the query classification process.

Given an input image I ∈ RHI×WI×3 and a text expres-
sion query Q ∈ RT with T words, we first extract the visual
features Ve ∈ RH×W×Cv and text features Le ∈ R1×Cl by
an image encoder Ev and a text encoder El [49], where
H = HI/s and W = WI/s. Cv and Cl denote the num-
bers of channels of visual and text features, respectively. s
is the ratio of down-sampling. We then use a projector layer
to transform V and L to a unified hidden dimension Cd,
i.e., V ∈ RH×W×Cd and L ∈ R1×Cd . The L2 channel-
wise normalization is used to regularize the output of the
projection layer. To harmonize the domain discrepancy, we
propose a bilateral prompt method (Sec. 3.2) to update the
visual and text features as:

V̂ = V + αV
′
; L̂ = L+ βL

′
,

with V
′
,L

′
= ΓPrompt (V,L) , (1)

where V̂ and L̂ denote the updated visual and text features,
and V

′
and L

′
are the residual enrichment prompted from
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Figure 3. Our bilateral prompt method aims to reduce the modal-
ity differences between visual and linguistic features. The text
features L are enhanced by the visual features V via the attention
map Al, which updates L to L

′
for classification. The visual fea-

tures V are enhanced by the text features L via the attention map
Av to update V to V

′
for localization.

L and V. α and β are weights to control the proportion of
bilateral prompting. ΓPrompt is our bilateral prompt method.

We have now aligned V̂ and L̂ explicitly. After reshap-
ing, the response between i-th flattened pixel of V̂ and j-th
query of L̂ can then be calculated as:

Ri,j =

Cd∑
ϑ=0

V̂i,ϑ · L̂j,ϑ, (2)

where ϑ and · represent channel index and element-wise
multiplication, respectively. We employ a learnable tem-
perature parameter τ [49] to scale and constrain the range
of Ri,j . In this way, we establish the relationship of each
pixel to the whole referring expression Q, and different pix-
els will echo responses of different degrees. A higher re-
sponse indicates that the pixel is more likely to belong to
the target object described by the positive expression.

3.2. Bilateral Prompt

To facilitate learning knowledge from the pretrained
model [49], we propose a bilateral prompt method to har-
monize the domain discrepancy between visual and text fea-
tures. Unlike previous prompt methods that either refine
visual and text features separately [17], or use the visual
features to refine the text features [50, 74, 73], our bilat-
eral prompt method enhances the features of one modality
with those of the other modality. Enriching the text features
with the visual features facilitates the classification process,
while enriching the visual features with the text features
helps localize the target objects.

Fig. 3 shows our bilateral prompt method. Given input
features V ∈ RH×W×Cd and L ∈ R1×Cd , we first compute
two attention maps as:

Al = SoftMax
(
(VW v

1 )⊗ (LW l
2)

⊤/
√
Cd

)
, (3)

Av = SoftMax
(
(LW l

1)⊗ (VW v
2 )

⊤/
√
Cd

)
, (4)

where Al ∈ R1×HW and Av ∈ RHW×1 denote the affin-
ity propagation of visual-to-text features and text-to-visual

features, respectively. W v
∗ ∈ RCd×Cd and W l

∗ ∈ RCd×Cd

are the learnable parameters for V and L. ⊗ denotes matrix
multiplication. The bilateral prompt is then formulated as:

L
′
= A⊤

l ⊗ (VW v
3 ), V

′
= Re(A⊤

v ⊗ (LW l
3)), (5)

where Re is a shape transform function, L
′ ∈ R1×Cd and

V
′ ∈ RH×W×Cd denote visual-enhanced linguistic fea-

tures and language-guided visual features, respectively. In
this way, the learned bilateral residuals (i.e., L

′
and V

′
) can

be used to update both visual and linguistic features to ef-
fectively harmonize their discrepancy, according to Eq. (1).

3.3. Localization via Text-to-Image Optimization

Classification. We formulate a classification process for the
network to learn to select the positive expressions from a set
of positive and negative expressions, with which we opti-
mize the text-to-image response maps to localize the target
object. We implement the classification process in a con-
trastive learning manner [20]. In our problem, we use the
input image I, a positive text expression Qp ∈ RT as a pos-
itive sample (or the anchor), and randomly sample N nega-
tive text expressions Qn ∈ RN×T (i.e., text expressions of
other images) from the whole dataset as negative samples.
We compute the response maps Ra ∈ RHW×(1+N) (which
include Rp ∈ RHW×1 for the positive expression Qp, and
Rn ∈ RHW×N for the negative expressions Qn) of image
I, as shown in Fig. 2. We then compute the image-level
score yj for each text query Qj as:

yj = max
i

Ra
i,j +

1

HW

HW∑
i=1

Ra
i,j + ψ(Ra

·,j), (6)

where ψ(Ra
·,j) is a regularization term proposed by [32].

We use it to re-balance our negative and positive text
queries. yj ranges from 0 to 1, and the larger it is, the better
the current query Qj matches with the input image.

The classification process is then supervised by:

Lcls(y, z) = − 1

N + 1

1+N∑
j=1

zj log

(
1

1 + e−yj

)

+ (1− zj)log

(
e−yj

1 + e−yj

)
, (7)

where z ∈ R1×(1+N) is an easy to obtain supervision sig-
nal, with 1 indicating a positive query and 0 a negative one.

Calibration. Given the coarse response maps derived from
the classification process, we propose a calibration method
to enhance the correctness of the positive response map Rp

by contrasting the target object with other objects of the
same image (i.e., considering them as background noise).



Specifically, we multiply the input image I with Rp to ob-
tain the target object and use it as the anchor. We use the
positive query Qp as the positive sample, and additionally
sample K queries that describe other objects of the same
image as negative samples (i.e., Fn

k , k ∈ 1, 2, . . . ,K). The
calibration process can then be formulated as:

Lcal = −(log S(I,Rp,Qp) +

K∑
k=1

log (1− S(I,Rp,Fn
k ))),

(8)

where S(·, ·, ·) is a similarity function to measure the match-
ing scores of the target object and a query, as:

S(I,Rp,Q) = φ(Ev(I⊙ up(Rp)), El(Q)), (9)

where Ev and El are CLIP [49] visual and text encoders. ⊙
and up() are Hadamard product and an up-sampling func-
tion, respectively. φ(·, ·) computes cosine similarity score.

Eq. (8) calibrates the positive response map in two ways.
The first term helps learn more compact foreground regions
by encouraging higher correlation of the instance-wise tar-
get object to the positive query. The second term suppresses
noisy information of other background objects by decreas-
ing the matching scores between foreground object regions
and those negative queries.

3.4. Pseudo Labels Generation and Segmentation

Positive Response Map Selection (PRMS). There are usu-
ally several text expressions available that refer to the same
target object in one image, but describing different proper-
ties of the object. Although these expressions are discrimi-
native enough for neural networks to localize the target ob-
ject, the corresponding response maps may not be exactly
the same. Hence, we select the response map of the best
quality by computing the cumulative similarity scores.

Specifically, we first compute the text-to-image response
Rp

t by Eq. (2) for each Qp
m of M positive queries. We

then compute the similarity between its masked target ob-
ject with those of all positive queries, and sum up all the
object-to-text similarity scores to reflect the accuracy of the
current response map as:

CSt =

M∑
m=1

S(I,Rp
t ,Q

p
m), t ∈ 1, 2, . . . ,M. (10)

We select the response map Rp
t with the maximum cumu-

lative score CSt as the response map of the target object.

Segmentation. We use [1] to refine our response maps and
conduct thresholding on the responses to obtain the pseudo
labels for training the segmentation network for RIS infer-
ence. The segmentation network has an image encoder, a

text encoder, a multi-modality fusion module, and a de-
coder. We use the same encoders as in Eq. (9), and the
decoder is symmetric to the encoder. Since the segmenta-
tion network only needs to predict the segmentation map,
we use the non-local module [65] to enrich the visual fea-
tures with the text features in the last three encoder layers,
and send them to the decoder. We train the segmentation
network with standard cross-entropy loss (Lce).

4. Experiments
4.1. Experiment Setups

Datasets. We conduct experiments on four benchmarks:
ReferIt [27], RefCOCO [68], RefCOCO+ [68] and Ref-
COCOg [41]. ReferIt has 19, 894 images with 13, 0525
annotated referring expressions, which are usually shorter
and more succinct. The other three datasets are all based on
MSCOCO [33], and each of them contains (images, anno-
tated expressions) as: (19,994, 142,209), (19,992, 141,564)
and (26,711, 104,560). While the expressions of RefCOCO
focus more on the position property of objects, those of Ref-
COCO+ focus more on appearance. Compared to these two
datasets, RefCOCOg is more challenging as their expres-
sions are usually longer and more complex. This dataset
has two partitions, i.e., the Google [41] and UMD [43] par-
titions. Both are used in our experiments.

Implementation Details. We use ResNet-50 [21] as our de-
fault image encoder, and CLIP [49] to initialize the image
and text encoders. Both α and β used in our bilateral prompt
are set to 0.1. We set the numbers of negative samples in
the classification loss and calibration method to N = 47
and K = 6, respectively. For images that do not have
enough negative queries (of only one object with expres-
sions), we randomly sample queries from the rest of dataset
to supplement K to 6. The number of hidden dimensions is
Cd = 1024, and the down-sampling ratio is s = 32. The
loss functions used in Step-1 is L = λ ∗ Lcls + Lcal. λ is
used to ensure the numerical and gradient equivalence dur-
ing training, and we empirically set λ to 5.

We implement our framework on PyTorch [45] and train
it for 15 epochs with a batch size of 48 on an NVIDIA
RTX3090 GPU with 24GB of memory. During training,
we resize the input images to 320 × 320 and set the max-
imum length of each referring expression to 20. The net-
work is optimized using the AdamW optimizer [39] with a
weight decay of 1e−2 and an initial learning rate of 5e−5

with polynomial learning rate decay. The training settings
are the same for both steps. During inference, we feed the
input image and query text to Step-2 of the segmentation
network to produce the segmentation map.

Evaluation Metrics. Following [14, 66], we adopt the
mask intersection-over-union (IoU) and Prec@0.5 (P@0.5)



Metric Method Sup. Backbone
ReferIt RefCOCO RefCOCO+ RefCOCOg

test val testA testB val testA testB val (G) val (U) test (U)

IoU

LAVT [65] F Swin-Base - 72.73 75.82 68.79 62.14 68.38 55.10 61.24 62.09 60.50
CTS [16] B+T ResNet-101 62.44 58.01 60.52 55.48 47.12 50.86 40.26 46.03 - -
AMR† [48] T ResNet-50 18.98 14.12 11.69 17.47 14.13 11.47 18.13 15.83 15.46 15.59
GroupViT† [62] T GroupViT 21.73 18.03 18.13 19.33 18.15 17.65 19.53 19.97 19.80 20.09
CLIP-ES† [34] T ViT-Base 18.67 13.79 15.23 12.87 14.57 16.01 13.53 14.16 13.93 14.09
GbS† [5] T VGG16 14.21 14.59 14.60 14.97 14.49 14.49 15.77 14.21 13.75 14.20
WWbL† [51] T VGG16 27.68 18.26 17.37 19.90 19.85 18.70 21.64 21.84 21.75 21.82
Ours (Step-1) T ResNet-50 33.33 25.11 26.47 23.80 22.31 21.61 22.86 26.93 26.62 27.27
Ours (Step-2) T ResNet-50 44.57 31.17 32.43 29.56 30.90 30.42 30.80 36.00 36.19 36.23

PointM

AMR† [48] T ResNet-50 7.12 15.55 5.52 28.91 16.33 5.90 30.27 25.51 24.96 26.14
GroupViT† [62] T GroupViT 27.44 25.01 26.30 24.42 25.92 26.06 26.12 30.02 30.90 30.98
CLIP-ES† [34] T ViT-Base 52.90 41.33 50.61 30.34 46.55 56.20 33.32 49.08 46.22 45.75
GbS† [5] T VGG16 30.30 21.58 19.52 25.95 20.95 18.34 25.96 24.64 24.60 25.38
WWbL† [51] T VGG16 42.84 31.28 31.15 30.79 34.47 33.30 36.10 29.32 32.13 31.37
Ours (Step-1) T ResNet-50 61.70 51.92 60.88 43.02 40.85 40.94 41.13 52.48 51.98 53.29
Ours (Step-2) T ResNet-50 67.00 54.72 65.64 43.40 53.72 61.30 45.24 58.01 58.84 58.70

Table 1. Quantitative comparison of different methods using the IoU and PointM metrics on four RIS benchmarks. Sup. denotes the
supervision type (F : full supervision, B: box-level labels, T : text description labels). (G) and (U) denote the Google and UMD dataset
partitions of RefCOCOg. † indicates the methods adapted from other tasks. “-” denotes unavailable values.

Image (a) “man in camouflage
and beret” “bald head” Image (b) “brown bowl of soup” “a sandwich with

a knife in it”

Image (c) “a young boy in a colorful
hat jumping a skateboard” Image (d)

“a young woman who is
standing by a building and

talking on a cellphone”
Image (e) “green bowl carrots”

Figure 4. Qualitative results of the proposed RIS method.

Metric MG [2] GbS†[5] WWbL†[51] Ours∗s1 Ourss1 Ourss2

Accbox 15.15 12.67 24.02 38.14 39.90 50.79
PointIt 47.52 48.12 57.04 70.10 72.56 74.94

Table 2. Quantitative comparison of our method and WSGs on the
ReferIt test set. ∗ denotes using ImageNet [13] weights to ini-
tialize the image encoder. s1 and s2 denote Step-1 and Step-2,
respectively. Refer to the Supplemental for more comparisons.

metrics to evaluate the segmentation accuracy. Following
[2, 51], we also use the pointing-game (PointIt) and box ac-
curacy (Accbox) to measure the localization performance.

However, we note that PointIt tends to yield inaccurate
localization scores in our task, as PointIt may count the hit
that falls into the box but out of ground truth mask as cor-
rected. Hence, we propose a new metric (PointM), which
is formulated as: PointM = #Hits

#Hits+#Misses , where #Hits
and #Misses are the numbers of Hits and Misses. If the

maximum point of the response map falls within the ground
truth mask regions, it is counted as a Hit. Otherwise, it is
considered as a Miss.

4.2. Comparison to State-of-the-arts

We validate the effectiveness of our framework by com-
paring it with fully supervised RIS method (LAVT [65]),
weakly-supervised RIS method (CTS [16]), and other re-
lated weakly-supervised methods (MG [2], AMR [48],
GroupViT [62], CLIP-ES [34], GbS [5] and WWbL [51]).

Table 1 reports the quantitative comparisons of the seg-
mentation and localization accuracy of different methods
on four benchmarks. Our approach demonstrates a signifi-
cant performance improvement compared to existing meth-
ods [48, 62, 34] that typically generate pseudo-labels us-
ing only class labels. This is because they lack the capa-
bility to discriminate and reason the relations between the
instance-level objects in the image, making their adaption to
RIS more challenging. Our framework also exhibits supe-



Query: “a sheep was eating in grass”

Query: “a red truck sitting by a tree”

Query: “an older man with glasses sitting at the table with his hands crossed”

(a) Image (b) ℒ!"# (c) ℒ!"#+BP (d) ℒ!"#+BP+ ℒ!$" (e) ℒ!"#+BP+ℒ!$"+Step2 (f) GT
Figure 5. Visualization of the ablation studies to demonstrate the effectiveness of each component. BP is the bilateral prompt.

rior performance in comparison to text-based weakly super-
vised methods [5, 51]. For instance, it outperforms WWbL
with IoU gains of 16.56 and 14.16 on the ReferIt test and
RefCOCOg val(G) sets. This is due to three reasons. First,
the formulations of target object localization are different.
WWbL uses the output relevance maps of [6] (which mainly
model semantic information of class labels) as GTs to learn
response maps. It may be incorrect if [6] fails to localize the
target object. In contrast, we locate target objects via the re-
sponse map generated from text-to-image optimization pro-
cess, which makes our model more sensitive to information
from both modalities. Second, our bilateral prompt gener-
ates language-guided visual features and image-enhanced
text features for better feature alignment. Third, we lever-
age instance-wise negative samples to suppress noisy back-
ground regions, which calibrates the target’s position, while
WWbL cannot reduce the background noise. Although CTS
achieves better performance than ours, it segments the tar-
get object using an auxiliary bounding-box supervision and
an offline mask proposal network [4]. In contrast, our ap-
proach does not learn from manually annotated masks or
bounding boxes. The comparison demonstrates that it is
possible to train a RIS model only using texts.

In addition, we also report the comparisons of the PointIt
and Accbox accuracy with WSGs in Table 2. On the ReferIt
test set, our framework in Step-1 brings PointIt improve-
ment of 25.04, 24.44, and 15.52 compared to MG, GbS,
and WWbL, respectively. Even using pretrained ImageNet
[13] weights to initialize the image encoder, our approach
still outperforms WWbL by large margins (Accbox: 14.12;
PointIt: 13.06). This demonstrates the effectiveness of our
framework in locating and segmenting target objects. Some
visual examples are shown in Fig. 4, where we can see that
our method can localize the target objects in challenging
scenes (e.g., long and complex sentence in Image (d)) with-

Lcls
BP Lcal IoU PointIt P@0.5 PointM

Pt2v Pv2t Pterm Nterm

✓ 18.94 51.42 3.87 36.93
✓ ✓ 19.70 53.47 4.21 39.14
✓ ✓ ✓ 20.43 56.49 4.47 40.92
✓ ✓ ✓ ✓ 24.18 64.03 8.33 49.85
✓ ✓ ✓ ✓ 22.43 60.81 6.44 45.58
✓ ✓ ✓ ✓ ✓ 27.81 66.99 12.75 53.69

Table 3. Ablation studies of different components on the Ref-
COCOg (U) train set. Pt2v and Pv2t denote the two variants de-
tached from the proposed bilateral prompt (BP), which indicate the
unilateral prompt from textual to visual features only and the op-
posite direction. Pterm and Nterm are the positive enhancement
and negative suppression processes.

out extra annotations for training.

4.3. Ablation Studies and Analyses

We conduct ablation studies on the text-to-image re-
sponse map prediction, and report the quantitative results
on RefCOCOg (U) train set in Table 3. First, we remove
the proposed bilateral prompt and calibration method as
our baseline (1-st row), and it can already obtain an ini-
tial localization (e.g., PointM: 36.93). To validate the bi-
lateral prompt, we transform it into two unilateral prompts
(i.e., Pt2v and Pv2t) that update only one-way information
(i.e., from text to visual or the opposite direction). We
can see that the bilateral prompt works better than the uni-
lateral prompts and significantly enhances the localization
than the baseline (e.g., PointM increased from 36.93 →
40.92). In addition, we split the calibration method into two
processes, i.e., the positive foreground enhancement pro-
cess (Pterm) and negative background suppression process
(Nterm). Both improve performance, and when they are
combined, performance is further boosted.



“brown chair bottom”

Image without PRMS with PRMS

“bottom center chair 
with pink pillow”

𝑪𝑺𝟎=0.65 𝑪𝑺𝟏=0.71

Figure 6. Qualitative comparison of with and without PRMS on
RefCOCO+ set. The cumulative score of the response map for
each query is placed in the upper left corner of its results. ⊙ in-
dicates the maximum response point. We highlight the best result
with red boxes.

IoU RefCOCO RefCOCO+ RefCOCOg
Google UMD

w/o PRMS 25.11 22.31 26.93 26.62
w PRMS 25.90 24.48 27.33 27.06

Table 4. Quantitative comparisons of our method without (w/o)
and with (w) the PRMS on different val sets.

We visualize the effect of each component in Fig. 5. Al-
though the model has higher responses at the target object
when only Eq. (7) is used, it lacks instance information and
suffers from background noise. The bilateral prompt en-
hances the localization of the referred target (see the shades
of color in (c)), and attenuates the false responses (e.g., the
waterfall in case-1). The calibration method can further en-
hance the correctness by suppressing irrelevant noisy back-
grounds (e.g., the black goat in case-1 and the woman in
case-3) and maintaining the completeness of the target ob-
ject. In (e), Step-2 further improves the performance.

Positive Response Map Selection (PRMS). We conduct
the add-on experiment on three benchmark* val sets to
verify the effectiveness of the positive response map se-
lection strategy. As shown in Table 4, PRMS generally
boosts the performance on all three datasets. In particular,
it brings around 10% IoU improvement on the challenging
RefCOCO+ dataset. In Fig. 6, we also show visual com-
parisons of two cases between the RIS performance with
and without PRMS. From the comparison, we can see that
PRMS is able to select the best response map out of a col-
lection of response maps that corresponds to the queries de-
scribing the same object with different properties. This fa-
cilitates the training of the segmentation network in Step-2.

Numbers of Negative Queries. The comparison results are
shown in Table 5. We can see that when we do not use
the negative text descriptions for classification, the perfor-
mance is extremely low. As the number of negative samples
gradually increases, the discriminative power of our model
improves and reaches to the peak at N + 1 = 48. When
continuing to increase the N to 60, the performance starts

*If the target has only one text expression, e.g., ReferIt dataset, this
strategy will degenerate to an identical mapping.

N + 1 K
1 2 6 12 24 48 60 3 6 12

IoU 11.16 19.91 22.19 24.05 26.19 27.81 27.61 27.05 27.81 27.63
PointIt 16.73 43.35 58.18 64.73 66.45 66.99 66.24 65.81 66.99 66.82
PointM 8.01 32.96 43.71 49.92 52.46 53.69 53.05 52.94 53.69 53.16

Table 5. Comparisons of numbers of negative queries N for Eq. (7)
and K for Eq. (8) on the RefCOCOg (U) train set.

Query: “an orange sheet covered mattress 
sitting on the lower bunk of the bed”

Query: “a black and white racquet next 
to a yellow racquet in a fence”

Image (a) Result Image (b) Result
Figure 7. Two failure cases. Both images are from the RefCOCOg
(U) val set, and the results are from Step-2. The GT objects are
indicated with red contours for visualization.

to decline instead, due to the huge imbalance of positive and
negative queries. We also investigate the effects of different
K in our calibration method, and we can observe a similar
trend (the performance is best when K=6).

5. Conclusion

In this paper, we have presented a novel RIS framework
that uses only the available text descriptions as a supervi-
sion signal for training. Our work has three main technical
contributions. First, we have proposed a bilateral prompt
method to help harmonize the discrepancy between the vi-
sual and linguistic features. Second, we have proposed a
calibration method to help reduce background noise to im-
prove the quality of the response maps. Third, we have pro-
posed a positive response map selection strategy to help ob-
tain high-quality pseudo labels for training a segmentation
network for RIS inference. To reduce the in-box error of
the existing PointIt metric, we have proposed a new metric
(PointM) for a more accurate localization evaluation. Ex-
tensive results demonstrate the effectiveness of our method
using only text descriptions as the supervision signal.

Nonetheless, our approach does have limitations. If a
scene has similar semantics in the foreground and back-
ground, it can be distracted by other objects of the same
category, and thus produce false localization, e.g., Fig. 7(a).
It may also have difficulties in handling occluded target ob-
jects, e.g., Fig. 7(b). A possible solution may be to incor-
porate structured linguistic features with visual features to
enhance the model’s reasoning abilities.
Acknowledgements: This work was supported by the Na-
tional Key R&D Program of China #2018AAA0102003,
the Fundamental Research Funds for the Central Univer-
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