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Abstract

Skeleton sequence representation learning has shown
great advantages for action recognition due to its promis-
ing ability to model human joints and topology. How-
ever, the current methods usually require sufficient labeled
data for training computationally expensive models, which
is labor-intensive and time-consuming. Moreover, these
methods ignore how to utilize the fine-grained dependen-
cies among different skeleton joints to pre-train an effi-
cient skeleton sequence learning model that can general-
ize well across different datasets. In this paper, we pro-
pose an efficient skeleton sequence learning framework,
named Skeleton Sequence Learning (SSL). To comprehen-
sively capture the human pose and obtain discriminative
skeleton sequence representation, we build an asymmet-
ric graph-based encoder-decoder pre-training architecture
named SkeletonMAE, which embeds skeleton joint sequence
into Graph Convolutional Network (GCN) and reconstructs
the masked skeleton joints and edges based on the prior
human topology knowledge. Then, the pre-trained Skele-
tonMAE encoder is integrated with the Spatial-Temporal
Representation Learning (STRL) module to build the SSL
framework. Extensive experimental results show that our
SSL generalizes well across different datasets and out-
performs the state-of-the-art self-supervised skeleton-based
action recognition methods on FineGym, Diving48, NTU 60
and NTU 120 datasets. Additionally, we obtain comparable
performance to some fully supervised methods. The code is
avaliable at https://github.com/HongYan1123/
SkeletonMAE

1. Introduction

Human action recognition has attracted increasing at-
tention in video understanding [88, 7, 48, 63, 43, 45, 46],
due to its wide applications [2, 14, 64, 54, 55, 89, 30,

*Corresponding author is Yang Liu.
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Figure 1: Traditional MAE usually uses random mask-
ing strategy to reconstruct skeleton, which tends to ignore
action-sensitive skeleton regions. Differently, our proposed
SkeletonMAE reconstructs the masked skeleton joints and
edges based on the prior human topology knowledge, to ob-
tain a comprehensive perception of the action.

80] in human-computer interaction [41, 40, 84], intelli-
gent surveillance security [42, 99], virtual reality, etc. In
terms of visual perception [24, 47], even without appear-
ance information, humans can identify action categories by
only observing the motion of joints. Unlike RGB videos
[3, 14, 13, 44], the skeleton sequences only contain the co-
ordinate information of the key joints of the human body,
which is high-level, light-weighted, and robust against com-
plex backgrounds and various conditions including view-
point, scale, and movement speed [11, 72]. Additionally,
with the development of human pose estimation algorithms
[8, 1], the localization method of human joints (i.e., key
points) has made great progress and it is feasible to obtain
accurate skeleton sequences. At present, the existing 2D
pose estimation method is more accurate and more robust
than the 3D pose estimation methods [11]. In Fig. 1 (a),
we visualize 2D poses estimated with HRNet [70] for two
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action classes on FineGym dataset [62]. It can be seen that
the 2D poses can accurately capture human skeletons and
motion details.

Due to the promising ability to model multiple granu-
larities and large variations in human motion, the skeleton
sequence is more suitable to distinguish similar actions with
subtle differences than the RGB data. To capture discrim-
inative spatial-temporal motion patterns, most of the exist-
ing skeleton-based action recognition methods [11, 88, 5]
are fully supervised and usually require large amounts of
labeled data for training elaborate models, which is time-
consuming and labor-intensive. To mitigate the problem
of limited labeled training data, self-supervised skeleton-
based action recognition methods [32, 18, 68] have attracted
increasing attention recently. Some contrastive learning
methods [32, 18] adopted data augmentation to generate
pairs of positive and negative samples, but they rely heavily
on the number of contrastive pairs. With the popularity of
the encoder-decoder [67, 51], some methods [94, 68] recon-
structed the masked skeleton sequence by link reconstruc-
tion to encourage the topological closeness following the
paradigm of graph encoder-decoder. However, these meth-
ods are usually good at link prediction and node clustering
but are unsatisfactory in node and graph classifications. For
accurate action recognition, the fine-grained dependencies
among different skeleton joints (i.e., graph classifications)
are essential. Therefore, previous self-supervised learning-
based methods tend to ignore the fine-grained dependen-
cies among different skeleton joints, which restricts the gen-
eralization of self-supervised skeleton representation. As
shown in Fig. 1 (b)-(c), the arm joints and edges are essen-
tial to discriminate between these two similar actions. Dif-
ferent from the randomly masking strategy of MAE [20],
our masking strategy is action-sensitive and reconstructs
specific limbs or body parts that dominate the given ac-
tion class. Our SkeletonMAE utilizes prior human topology
knowledge to guide the reconstruction of the masked skele-
ton joints and edges to achieve a comprehensive perception
of the joints, topology, and action.

To address the aforementioned challenges, we pro-
pose an efficient skeleton sequence representation learn-
ing framework, named Skeleton Sequence Learning (SSL).
To fully discover the fine-grained dependencies among
different skeleton joints, we build a novel asymmet-
ric graph-based encoder-decoder pre-training architecture
named SkeletonMAE that embeds skeleton joint sequences
in Graph Convolutional Network (GCN). The Skeleton-
MAE aims to reconstruct the masked human skeleton joints
and edges based on prior human topology knowledge so
that it can infer the underlying topology of the joints and
obtain a comprehensive perception of human action. To
learn discriminative spatial-temporal skeleton representa-
tion, the pre-trained SkeletonMAE encoder is integrated

with the Spatial-Temporal Representation Learning (STRL)
module to learn spatial-temporal dependencies. Finally, the
SSL is fine-tuned on action recognition datasets. Extensive
experimental results on FineGym, Diving48, NTU 60 and
NTU 120 show that our SSL generalizes well across dif-
ferent datasets and outperforms the state-of-the-art methods
significantly. Our contributions are summarized as follows:

• To comprehensively capture human pose and obtain
discriminative skeleton sequence representation, we
propose a graph-based encoder-decoder pre-training
architecture named SkeletonMAE, that embeds skele-
ton joint sequence into GCN and utilize the prior hu-
man topology knowledge to guide the reconstruction
of the underlying masked joints and topology.

• To learn comprehensive spatial-temporal dependen-
cies for skeleton sequence, we propose an efficient
skeleton sequence learning framework, named Skele-
ton Sequence Learning (SSL), which integrates the
pre-trained SkeletonMAE encoder with the Spatial-
Temporal Representation Learning (STRL) module.

• Extensive experimental results on FineGym, Div-
ing48, NTU 60 and NTU 120 datasets show
that our SSL outperforms the state-of-the-art self-
supervised skeleton-based action recognition methods
and achieves comparable performance compared with
the state-of-the-art fully supervised methods.

2. Related Work

Action Recognition. One of the most challenging tasks
for action recognition is to distinguish similar actions
from subtle differences. Recently, some challenging ac-
tion recognition datasets like FineGym [62], Diving48
[35], NTU RGB+D 60 [61] and NTU RGB+D 120 [38]
are proposed. These datasets contain a large number of
challenging actions that require discriminative and fine-
grained action representation learning. For example, in
FineGym [62], an action is divided into action units, sub-
actions, or phases, and the model is required to distinguish
between “split leap with 1 turn” and “switch leap with 1
turn”. The higher inter-class similarity and a new level
of granularity in the fine-grained setting make it a chal-
lenging task, which makes coarse-grained backbones and
methods [14, 2, 74, 83] struggle to overcome. To tackle
the more challenging fine-grained action recognition task,
most of the existing works [53, 34] are fully supervised
and consider fine-grained actions as distinct categories and
supervise the model to learn action semantics. However,
collecting and labeling these fine-grained actions is time-
consuming and labor-intensive, which limits the generaliza-
tion of a well-trained model to different datasets. To utilize
unlabeled data, we propose a graph-based encoder-decoder
pre-training architecture named SkeletonMAE.



Skeleton-based Action Recognition. Due to the promis-
ing ability to model multiple granularities and large varia-
tions in human motion, the skeleton data is more suitable for
the aforementioned action recognition task than the RGB
data [4]. Early skeleton-based action recognition methods
are usually handcrafted, exploiting the geometric relation-
ship of skeleton joints [50, 76, 79, 77], which greatly limits
the feature representation of skeletons. Benefiting from the
advantages of deep learning, some methods [98, 65, 66] uti-
lized RNNs as the basic model, Du et al. [10] presented a
pioneering work based on hierarchical RNNs. But RNNs
easily suffer from vanishing gradients [21]. Inspired by
the booming Graph Convolutional Networks (GCN) [28],
Yan et al. [88] proposed a spatial-temporal graph convolu-
tional network to learn the spatial and temporal pattern from
skeleton data. However, their manually defined topology is
arduous to model the relations among joints in underlying
topology. Chen et al. [5] proposed a channel-wise topol-
ogy graph convolution, which models channel-wise topol-
ogy with a refinement method. Duan et al. [11] proposed
a PoseConv3D model that relies on a 3D heatmap volume
instead of a graph sequence as the base representation of
human skeletons. Different from previous methods that
required large amounts of labeled data for training elabo-
rate models, we utilize unlabeled skeleton sequences to pre-
train a graph-based encoder-decoder named SkeletonMAE
to comprehensively capture human pose and obtain discrim-
inative skeleton sequence representation.

Self-supervised Learning for Skeleton Sequence. To
learn more effective representation for unlabeled skele-
ton data, self-supervised learning has achieved inspiring
progress recently. For contrastive learning approaches, AS-
CAL [58] and SkeletonCLR [32] applied momentum en-
coders for contrastive learning with single-stream skeleton
sequences. AimCLR [18] used an extreme data augmenta-
tion strategy to add additional hard contrastive pairs. Most
contrastive learning methods adopt data augmentation to
generate positive and negative pairs, but they rely heavily
on the number of contrastive pairs. For generative learn-
ing approaches, LongT GAN [94] proposed the encoder-
decoder to reconstruct masked input sequence skeletons.
Based on the LongT GAN, P&C [68] strengthened the en-
coder and weakened the decoder for feature representation.
Wu et al. [85] proposed a spatial-temporal masked auto-
encoder framework for self-supervised 3D skeleton-based
action recognition. Colorization [90] used three pairs of
encoder-decoder frameworks to learn spatial-temporal fea-
tures from skeleton point clouds. Due to the limitation
of the reconstruction criterion, previous generative meth-
ods usually fail to fully discover the fine-grained spatial-
temporal dependencies among different skeleton joints. In
our SkeletonMAE, we utilize the prior human topology
knowledge to infer the skeleton sequence and obtain a com-

prehensive perception of the action.

3. Methodology
In this section, we introduce the details of Skeleton Se-

quence Learning (SSL), which contains two parts: 1) pre-
training SkeletonMAE and 2) fine-tuning on downstream
datasets based on the pre-trained SkeletonMAE.

3.1. Pre-training SkeletonMAE

In this section, we introduce graph-based asymmetric
encoder-decoder pre-training architecture SkeletonMAE, to
learn human skeleton sequence representations without su-
pervision. Since Graph Isomorphism Network (GIN) [87]
provides a better inductive bias, it is more suitable for learn-
ing more generalized self-supervised representation [22].
Therefore, we adopt GIN as the backbone of SkeletonMAE.
Besides, we evaluate different backbones of SkeletonMAE
in Tab. 4, including GIN [87], GCN [28], and GAT [75].

3.1.1 SkeletonMAE Structure

Inspired by the effective representation learning by masked
autoencoder (MAE) in NLP [9], image recognition [20],
and video recognition [73], we focus on the human skeleton
sequence and build an asymmetric graph-based encoder-
decoder pre-training architecture named SkeletonMAE that
embeds skeleton sequence and its prior topology knowledge
in GIN. The SkeletonMAE is implemented following the
paradigm of graph generative self-supervised learning.

We follow the joint label of the Kinetics Skeleton dataset
[63]. Specifically, as Fig. 2(d) shown, we divide all N = 17
joints into R = 6 local regions according to the natural
parts of the body: V0, ...,V5. Notably, compared to the
randomly masking strategy from MAE [20] to select skele-
ton joints, our masking strategy is action-sensitive and re-
constructs specific limbs or body parts that dominate the
given action class. Then, we mask these skeleton regions
and make the SkeletonMAE reconstruct the masked joint
features and their edges based on the adjacent joints. By
reconstructing the masked skeleton joints and edges, the
SkeletonMAE can infer the underlying topology of joints
and obtain a comprehensive perception of the action.

As shown in Fig. 2, the SkeletonMAE is an asymmet-
ric encoder-decoder architecture, which includes an encoder
and a decoder. The encoder consists of LD GIN layers
that map the input 2D skeleton data to hidden features.
The decoder, which consists of only one GIN layer, recon-
structs the hidden features under the supervision of the re-
construction criterion. According to the prior human skele-
ton knowledge that the human skeleton can be represented
as a graph with joints as vertices and limbs as edges, we for-
mulate the human skeleton as the following graph structure.

The skeleton sequence of two-dimensional coordinates
of N human skeleton joints and T frames is pre-processed
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Figure 2: The details of our skeleton sequence pre-training architecture SkeletonMAE. (a) We build a GIN-based asymmetric
encoder-decoder structure, to reconstruct joint features to enhance action representation ability. (b) The GIN-based encoder
structure contains LD GIN neural network layers, to learn the joint representation spatially. (c) The decoder consists of one
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in the following way. Specifically, we embed all skeleton
joints and their topology into a structure G, the skeleton
structure and the joint feature are fused to obtain a joint
sequence matrix S ∈ RN×T×2. And then the S is linearly
transformed to S ∈ RN×T×D with learnable parameters.
We empirically set T and D to 64. For each skeleton frame
X ∈ RN×D from S, let G = (V,A,X) denote a skeleton,
where V = {v1, v2, ......, vN} is the node set that contains
all skeleton joints, N = |V| is the number of joints. The
number of joints is N = 17. A ∈ {0, 1}N×N is an adja-
cency matrix, where Ai,j = 1 if joints i and j are physically
connected, otherwise 0. The feature of vi is represented as
xi ∈ R1×D. And GE , GD denote the GIN encoder and the
GIN decoder, respectively.

3.1.2 Skeleton Joints Masking and Reconstruction
Since the prior human skeleton topology A is embed-
ded (Fig. 2) and we specify the aggregation of joints in
Sec. 3.1.1. Inspired by the GraphMAE [22] that randomly
reconstructs the masked graph nodes, our SkeletonMAE re-
constructs the masked skeleton feature X based on the prior
skeleton topology, rather than reconstructing graph struc-
ture A [71, 17] or reconstructing both structure A and fea-
tures X [60, 56].

To mask skeleton joint features, we randomly select one
or more joint sets from V = {V0, ...,V5}, which consists
of a subset V ⊆ V for masking. For the human skeleton
sequence, each joint communicates with some of its adja-
cent joints to represent the specific action class. Therefore,
it is not feasible to mask all joint sets for all action classes.
Then, each of their features is masked with a learnable mask
token vector [MASK] = x[M] ∈ RD. Thus, the masked
joint feature xi for vi ∈ V in the masked feature matrix X
can be defined as xi = x[M] if vi ∈ V , otherwise xi = xi.
We set X ∈ RN×D as the input joint feature matrix of the

SkeletonMAE, and each joint feature in X can be defined as
xi =

{
x[M],xi

}
, i = 1, 2, · · · , N . Therefore, the masked

skeleton sequence can be formulated as G = (V,A,X) and
the objective of SkeletonMAE is to reconstruct the masked
skeleton features in V given the partially observed joint fea-
tures X with the input adjacency matrix A. The process of
SkeletonMAE reconstruction is formalized as:{

H = GE(A,X), H ∈ RN×Dh

Y = GD(A,H), Y ∈ RN×D , (1)

where H and Y denote the encoder output and the decoder
output, respectively. The objective of SkeletonMAE can be
formalized as minimizing the divergence between X and Y.

3.1.3 Reconstruction Criterion
The common reconstruction criterion for masked auto-
encoders is a mean squared error (MSE) in image and
video tasks. However, for skeleton sequence, the multi-
dimensional and continuous nature of joint features makes
MSE hard to achieve promising feature reconstruction be-
cause the MSE is sensitive to dimensionality and vector
norms of features [15]. Inspired by the observation [16]
that the l2-normalization in the cosine error maps vectors to
a unit hyper-sphere and substantially improves the training
stability, we utilize the cosine error as the reconstruction.

To make the reconstruction criterion focus on harder
ones among imbalanced easy-and-hard samples [22], we
introduce the Re-weighted Cosine Error (RCE) for Skele-
tonMAE. The RCE is based on the intuition that we can
down-weigh easy samples’ contribution in training by scal-
ing the cosine error with a power of β ≥ 1. For predictions
with high confidence, their corresponding cosine errors are
usually smaller than 1 and decay faster to zero when the
scaling factor β > 1. Formally, given the original feature
X ∈ RN×D and the reconstructed output Y ∈ RN×D, the
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RCE is defined as:

LRCE =
∑
vi∈V

(
1

|V|
− xT

i · zi∣∣V| × ∥xi

∥∥× ∥zi∥
)β , (2)

which represents the average of the similarity gap between
the reconstructed feature and the input feature over all
masked joints. And β is set to 2 in our work.

By training the SkeletonMAE to reconstruct the skele-
ton sequence, the pre-trained SkeletonMAE can compre-
hensively perceive the human skeleton structure and obtain
discriminative action representation. After pre-training, the
SkeletonMAE can be elegantly embedded into the Skeleton
Sequence Learning (SSL) framework for fine-tuning.

3.2. Fine-tuning for Skeleton Action Recognition
To evaluate the SkeletonMAE’s generalization ability

for skeleton action recognition, we build a complete skele-
ton action recognition model named Skeleton Sequence
Learning (SSL), based on the pre-trained SkeletonMAE.
To capture multiple-person interaction, we integrate two
pre-trained SkeletonMAE encoders to build the Spatial-
Temporal Representation Learning (STRL) module, as
shown in Fig. 3(b)-(c). The entire SSL consists of an M -
layer STRL model and a classifier. The SSL model is fi-
nally fine-tuned on skeleton action recognition datasets with
cross-entropy loss to recognize actions.

3.2.1 Spatial-Temporal Representation Learning
The STRL contains two pre-trained SkeletonMAE encoders
for Spatial Modeling (SM). The input of SM is skeleton se-
quence S. The output of SM is connected with the input by
1× 1 convolution for residual connection (Fig. 3 (b)).

As shown in Fig. 3 (c), the input skeleton sequence
S ∈ RN×T×D is firstly added with the learnable temporal
position embedding PE to obtain the skeleton sequence fea-
ture H

(l)
t ∈ RP×N×D(l)

. To model multiple human skele-
ton interactions, we obtain two individual features (P = 2)
for two persons H(l)

t,0 ∈ RN×D(l)

and H
(l)
t,1 ∈ RN×D(l)

from

H
(l)
t . Here, we take the joint feature of the 0-th person as

an example, the operation of the 1-th person is implemented
similarly. We send the joint representation H

(l)
t,0 and prior

knowledge of the joint Ã into the SM module,

SM(H
(l)
t,0) = Repeat(SP(GE

(
Ã,H

(l)
t,0

)
);N)⊕H

(l)
t,0,

(3)

where GE is the SkeletonMAE encoder, SP(·) denotes the
sum-pooling, Repeat(·;N) means repeating the single joint
into N joints representations after sum-pooling and then
connect it with the H

(l)
t,0 residual to get the global joint rep-

resentation SM(H
(l)
t,0). In this way, the SM module can

obtain global information through a single joint represen-
tation, and constrain some joint features through all joint
representations. Similarly, SM(H

(l)
t,1) is obtained in the

same way. As shown in Fig. 3(c), we get the joint features
SM(H

(l)
t ) that contains the action interaction bewtween the

0-th person and the 1-th person. According to the update
rules of graph convolution [28], we can obtain H

(l+1)
t from

H
(l)
t in a multi-layer GCN. For more details, please refer

to the Supplementary in Section D. The final skeleton se-
quence representation is defined as follows:

H
(l+1)
t = σ

(
SM(H

(l)
t )W(l)

)
. (4)

where W(l) denotes the trainable weight matrix in the lth

layer, σ(·) denotes the ReLU activation function. Then, we
adopt the widely-used multi-scale temporal pooling [5, 39]
to get the final output. Finally, a classifier consisting of
MLP and softmax predicts the action class.

4. Experiments
All experiments are conducted with a single modality

(2D pose) and evaluated on the corresponding train/test sets.

4.1. Datasets

We evaluate our SSL on four benchmark datasets Fin-
eGym [62], Diving48 [35], NTU RGB+D 60 [61] and



Method Modality Mean Acc. (%)
Fully Supervised
I3D [2] RGB 64.4
ST-S3D [86] RGB 72.9
TSN [81] RGB+Flow 79.8
TRNms [96] RGB+Flow 80.2
TSM [36] RGB+Flow 81.2
GST-50 [49] RGB 84.6
MTN [31] RGB 88.5
LT-S3D [86] RGB 88.9
TQN [93] RGB+Text 90.6
PYSKL [11] Skeleton 93.2
PYSKL [11] RGB+Skeleton+Limb 95.6
Unsupervised Pre-train
SaL [52] RGB 42.7
TCC [12] RGB 45.6
GTA [19] RGB 49.5
CARL [3] RGB 60.4
SSL (ours) Skeleton 91.8

Table 1: The comparison with the state-of-the-art unsuper-
vised pre-train and supervised methods on FineGym.

NTU RGB+D 120 [38] in the mainstream skeleton action
recognition task. For all datasets except FineGym, we fol-
low the pre-processing protocol provided by [11] to ob-
tain the skeleton sequence from the 2D pose estimator.
The pre-processing adopts a Top-Down approach for pose
extraction, where the detector is Faster-RCNN [59] with
ResNet50 backbone and the pose estimator is HRNet [70]
pre-trained on COCO-keypoint [37]. To make a fair com-
parison, we added pixel noise to the joint during training,
making the original joint confidence rate unreliable, thus
we do not use the originally fixed threshold.
FineGym is a large-scale fine-grained action recognition
dataset for gymnastic videos, which contains 29K videos
of 99 fine-grained gymnastics action classes, which re-
quires action recognition methods to distinguish different
sub-actions in the same video. In particular, it provides tem-
poral annotations at both action and sub-action levels with a
three-level semantic hierarchy. We follow the method [11]
to extract the skeleton data from the 2D pose estimator.
Diving48 is a challenging fine-grained dataset that focuses
on complex and competitive sports content analysis. It is
formed of over 18k video clips from competitive dive cham-
pionships that are distributed over 48 fine-grained classes
with minimal biases. The difficulties of the dataset lie in
that actions are similar and differ in body parts and their
combinations which require the model to capture details and
motion in body parts and combine them to perform classifi-
cation. We report the accuracy on the official train/test split.
NTU RGB+D 60 and 120. NTU RGB+D is a large-scale
skeleton-based action recognition dataset, where NTU 60
contains 56,880 skeleton sequences and 60 action classes.

Method Pre-train GFLOPs Acc.(%)
Fully Supervised
TSN [35] ImageNet - 16.8
TRN [25] ImageNet - 22.8
P3D [49] ImageNet - 32.4
C3D [49] ImageNet - 34.5
CorrNet [49] - 74.8 35.5
CorrNet-R101 [78] ImageNet 187.3 38.2
MG-TEA-ResNet50 [95] ImageNet - 39.5
GSM [69] ImageNet 107.4 40.3
TSM-R50 [29] ImageNet 153.8 41.6
TMF [82] ImageNet - 42.2
Unsupervised Pre-train
RESOUND-C3D [35] K400 - 16.4
Jenni et al. [23] K400 - 29.9
SSL (ours) Diving48 42.8 34.1

Table 2: The comparison with the unsupervised pre-train
and supervised methods on the Diving48 dataset.

NTU 120 has 114,480 skeleton sequences and 120 action
categories. The NTU 60 and 120 datasets have a large
amount of variation in subjects, views, and backgrounds.

4.2. Implementation Details

In this paper, our SkeletonMAE is optimized by the
Adaptive Moment Estimation (Adam) with the initial learn-
ing rate as 1.5e−4 and the PReLU is the activation function.
The batch size is 1024 and the training epoch is 50. At the
fine-tuning stage, we use the Stochastic Gradient Descent
(SGD) with momentum (0.9) and adopt the warm-up strat-
egy for the first 5 epochs. The total fine-tuning epochs are
110. The learning rate is initialized to 0.1 and is divided
by 10 at the 90 epoch and the 100 epoch. And we employ
0.1 for label smoothing. We use a large batch size of 128 to
facilitate training our attention mechanism and enhancing
the model’s perception for all human action classes. Both
our pre-training and fine-tuning models are implemented by
PyTorch [57], and our SSL is trained on a single NVIDIA
GeForce RTX 2080Ti GPU. For more details of implemen-
tation, please refer to the Supplementary in Section A.
Pre-training and Fine-tuning Setting. For each dataset,
the SkeletonMAE encoder is pre-trained with unlabeled
data from the training set. Then, we load the learned pa-
rameter weights to fine-tune the SSL model.
Evaluation Metrics. To make a fair comparison, we fol-
low previous methods [11, 3, 18] and report the Mean Top-
1 accuracy(%) on FineGym dataset and Top-1 accuracy(%)
on Diving48, NTU 60, and NTU 120 datasets.

4.3. Downstream Evaluation

For a fair comparison, we compare our SSL with other
models without pre-training on additional large-scale action
datasets, e.g., Kinetics [27] or Sports1M [26]. The com-



parison results on FineGym, Diving48, and NTU 60 & 120
datasets are shown in Tab. 1, Tab. 2, and Tab. 3, respectively.
Results on FineGym Dataset. In Tab. 1, our SSL with
skeleton input outperforms most of the fully supervised
methods and achieves the best performance among unsu-
pervised pre-train methods with RGB input. For the same
input modality, our performance is lower than the fully su-
pervised method PYSKL[11] (with the skeleton as input)
by about 1.4%, because the PYSKL adopts stacks of visual
heatmaps of skeleton joints as input while we only use hu-
man skeleton coordinates. This validates the promising dis-
criminative ability of our skeleton sequence representation.
Results on Diving48 Dataset. Our SSL with skeleton in-
put outperforms some fully supervised methods. Although
our SSL is not pre-trained on additional large-scale pre-
training action datasets in Tab. 2, it still achieves compet-
itive performance among unsupervised pre-train methods.
This validates that our pre-training model SkeletonMAE
can learn discriminative skeleton sequence representation.

The results on FineGym and Diving48 validate that our
SkeletonMAE has a promising ability to enhance the fea-
ture representation of skeleton sequence by comprehen-
sively perceiving the underlying topology of actions, and
the SSL can learn discriminative action representation.
Results on NTU 60 and NTU 120 Datasets. In Tab. 3,
for NTU 60 X-sub and NTU 60 X-view, compared with un-
supervised pre-train methods, our SSL outperforms the cur-
rent state-of-the-art method Colorization [90] by 4.8% and
1.6%, respectively. Our SSL is also competitive compared
with fully supervised methods, outperforming the first six
fully supervised methods on NTU 60 X-sub. For NTU 120
X-sub and NTU 120 X-set, our SSL outperforms the pre-
vious best-unsupervised pre-train method 3s-PSTL [97] by
3.5% and 3.1%, respectively. Our SSL is superior compared
with some fully supervised methods on NTU 120 X-sub and
NTU 120 X-set. These results show that our SSL can learn
discriminative skeleton representation from large-scale ac-
tion recognition datasets due to the promising generaliza-
tion ability of our SkeletonMAE.

4.4. Ablation Studies

In this section, we analyze the contributions of essential
components and hyper-parameters of our model. Note that
unless otherwise specified, all experiments are verified on
the FineGym dataset with masking body sub-region 3.
Whether to load pre-trained model or not. To explore
the effectiveness of loading the pre-trained SkeletonMAE
encoder, we find that the accuracy is 86.3 without loading
the pre-trained SkeletonMAE encoder (randomly initialized
weights). As Tab. 5(a) shows, loading the pre-trained model
is always better than not loading it. This validates that our
SkeletonMAE can learn more comprehensive and general-
ized representations for unlabeled fine-grained actions by

reconstructing the skeleton joint features.
GIN layers in SkeletonMAE. Tab. 4(a) shows the perfor-
mance of using different GIN layers in the SkeletonMAE
encoder. The performance is the best when LD = 3.
Comparison with contrastive learning methods. To
verify the superior ability of our SkeletonMAE when con-
ducting skeleton sequence pre-training, we compare our
SkeletonMAE with different contrastive learning methods
GraphCL and JOAO. As shown in Tab. 4(b), our Skele-
tonMAE achieves the best performance. Besides, we vi-
sually compare the action representations of SkeletonMAE
and GraphCL by PCA, as shown in Fig. 4(a) and Fig. 4(b).
Compared to GraphCL, the skeleton representation of our
SkeletonMAE appears to have a larger inter-class vari-
ance and smaller intra-class variance. This validates that
our SkeletonMAE can comprehensively capture the human
pose and obtain discriminative skeleton sequence represen-
tation. We observe similar patterns in all other classes but
visualize only five categories for simplicity.
Backbones and masked body parts in SkeletonMAE.
As shown in Tab. 4(c), we show the accuracy of our
SSL with different SkeletonMAE backbones and different
masked body parts in SkeletonMAE. It can be seen that
GIN is always better than both GAT and GCN under the
same masked body part. This is because that GIN provides
a better inductive bias for graph-level applications. Thus, it
is more suitable for learning more generalized skeleton rep-
resentations. Additionally, we can see that masking body
sub-regions 3 and 5 are both optimal across all backbones,
which demonstrates the importance of reconstruction of hu-
man limbs in action recognition.
Variants of SSL. To evaluate whether our pre-trained
SkeletonMAE is effective across different skeleton action
recognition models, we set the different number of STRL
layers (M = 1, 2, 3, 4) to obtain four variants of the SSL.
As shown in Tab. 5(a), all SSL variants outperform the ran-
dom initialization of SkeletonMAE in SSL, which validates
our body part masking strategy indeed improves the dis-
criminative ability of skeleton feature by learning action-
sensitive visual concepts. Additionally, three-layer STRL
is the best due to the good compromise between efficiency
and computational cost. Moreover, it also validates that our
SkeletonMAE generalizes well across different models.
Skeleton Masked Strategy. In Tab. 5(b), our masked
body part strategy is fairly compared with the random
masked strategy under the same masked joint conditions.
Our method is better than the random mask method across
all settings. As mentioned in Sec. 3.1.1, our masking strat-
egy is action-sensitive and reconstructs specific limbs or
body parts that dominates the given action class and is suit-
able for real-world skeleton-based action recognition.
Transferability of the SkeletonMAE across datasets.
As shown in Fig. 5(a), we pre-train SkeletonMAE on the



Method Backbone Supervision Joint Number 2D Skeleton
NTU 60 NTU 120

X-sub (%) X-view (%) X-sub (%) X-set (%)
ST-GCN [88] GCN Fully Supervised 25 % 81.5 88.3 - -
AS-GCN [33] GCN Fully Supervised 25 % 86.8 94.2 - -
2s-AGCN [63] GCN Fully Supervised 25 % 88.5 95.1 82.9 84.9
Shift-GCN [6] GCN Fully Supervised 25 % 90.7 96.5 85.9 87.6
MS-G3D [48] GCN Fully Supervised 25 % 91.5 96.2 86.9 88.4
CTR-GCN [5] GCN Fully Supervised 25 % 92.4 96.8 88.9 90.6
PYSKL [11] CNN Fully Supervised 17 ! 93.7 96.6 86.0 89.6
SkeletonCLR [32] ST-GCN Unsupervised Pre-train 25 % 82.2 88.9 73.6 75.3
CrosSCLR [32] ST-GCN Unsupervised Pre-train 25 % 86.2 92.5 80.5 80.4
Wu et al. [85] STTFormer Unsupervised Pre-train 25 % 86.6 92.9 76.8 79.1
AimCLR [18] ST-GCN Unsupervised Pre-train 25 % 86.9 92.8 80.1 80.9
3s-PSTL [97] ST-GCN Unsupervised Pre-train 25 % 87.1 93.9 81.3 82.6
Colorization [90] DGCNN Unsupervised Pre-train 25 % 88.0 94.9 - -
SSL(ours) STRL Unsupervised Pre-train 17 ! 92.8(↑ 4.8) 96.5(↑ 1.6) 84.8(↑ 3.5) 85.7(↑ 3.1)

Table 3: The comparison with state-of-the-art unsupervised pre-train and supervised methods on NTU 60 and NTU 120
datasets. ‘ ’ means the method with the second-best performance under unsupervised pre-training.

LD Mean Acc.
1 89.6
2 90.7
3 91.2
4 90.9

(a)

Method Mean Acc.
GraphCL [92] 86.5
JOAO [91] 88.7
Ours(SkeletonMAE) 91.2

(b)

# Masked Body Part 0 1 2 3 4 5
GAT [75] 86.8 88.1 88.9 89.5 89.4 90.0
GCN [28] 87.6 88.9 89.3 90.6 89.5 90.5
GIN [87] 88.6 89.5 90.2 91.2 90.3 91.2

(c)
Table 4: (a) Mean accuracy of using the different number of
GIN layers in SkeletonMAE encoder. (b) Comparison re-
sults with the contrastive learning method as the pre-trained
encoder. (c) The results of using different backbones in
SkeletonMAE under each masked body part are compared.
M 1 2 3 4
Mean Acc. 89.1(↑2.8) 90.6(↑4.3) 91.2(↑4.9) 91.0(↑4.7)

(a)
# Masked Joints Number 5 9 12 15
Ratio of Mask Joints 30% 50% 70% 90%
Accuracy of SSL 89.7 90.3 89.9 90.1

Masked Body Part
High 91.8

(V3,V5)
91.2

(V0,V3,V5)

91.0
(V1,V2,V3,
V4,V5)

90.8
(V0,V1,V2,
V3,V5)

Low 91.1
(V2,V4)

90.1
(V0,V1)

91.0
(V1,V2,V3,
V4,V5)

90.2
(V0,V1,V3,
V4,V5)

(b)
Table 5: (a) Results of four SSL variants. ↑ represents the
accuracy improvement relative to the random initialization
of SkeletonMAE in SSL. (b) The comparison of our body
part based masked and the random masked strategies. V0-
V5: Head, Torso, Left arm, Right arm, Left leg, Right leg.

(a) (b) (c)

1.0

0.8

0.6

0.4

0.2

0.0

Figure 4: (a) and (b) are 2d-PCA of SkeletonMAE and
GraphCL as pre-trained encoder representations. We ran-
domly select five action classes for 2d-PCA visualization,
(c) Confusion matrix for fine-grained action recognition.

FineGym dataset and then fine-tune it on NTU 60 X-sub
and NTU 120 X-sub datasets. Compared with the method
that uses the same dataset for pre-training and fine-tuning,
our SkeletonMAE achieves better performance across all
masked strategies when conducting dataset transfer. This
shows that the SkeletonMAE can learn generalized skeleton
representation and effectively transfer the strong represen-
tation ability to other datasets.

4.5. Visualization Analysis

Fig. 6 shows the reconstruction process of the skeleton
sequence by SkeletonMAE. From the same frame, the dif-
ference between the reconstructed skeleton sequence and
the original skeleton sequence is slight, but overall the hu-
man body structure is reserved. This shows that the Skele-
tonMAE has good spatial representation learning ability.
Fig. 4(c) shows that our SSL works well for fine-grained
action recognition tasks on the FineGym dataset. More vi-
sualization results are in Supplementary Section C.

5. Conclusion
In this paper, we propose an efficient skeleton sequence

learning framework, SSL, to learn discriminative skeleton-
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Figure 5: (a) The accuracies with mask body part of 0-5
on the NTU 60 X-sub dataset, and (b) the accuracies on the
NTU 120 X-sub dataset. ‘*’ means SkeletonMAE encoder
pre-trained on the FineGym dataset.
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(a) Orginal joint

(b) Masked joint

(c) Reconstructed joint

Figure 6: Visualization results for skeleton sequence of
“aerial walkover forward” action on FineGym dataset. (a)
The input skeleton sequence. (b) Masked skeleton sequence
(masked parts are 3 and 5). (c) Reconstructed skeleton se-
quence.

based action representation. To comprehensively capture
the human pose and obtain skeleton sequence represen-
tation, we propose a graph-based encoder-decoder pre-
training architecture, SkeletonMAE, that embeds skeleton
joint sequence into GCN and utilize the prior human topol-
ogy knowledge to guide the reconstruction of the under-
lying masked joints and topology. Extensive experimental
results show that our SSL achieves SOTA performance on
four benchmark skeleton-based action recognition datasets.
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