
Language-driven All-in-one Adverse Weather Removal

Hao Yang1, Liyuan Pan1, Yan Yang2, and Wei Liang1

1Beijing Institute of Technology 2 The Australian National University
{hao.yang, liyuan.pan, liangwei}@bit.edu.cn, {yan.yang}@anu.edu.au

Abstract

All-in-one (AiO) frameworks restore various adverse
weather degradations with a single set of networks jointly.
To handle various weather conditions, an AiO framework is
expected to adaptively learn weather-specific knowledge for
different degradations and shared knowledge for common
patterns. However, existing methods: 1) rely on extra su-
pervision signals, which are usually unknown in real-world
applications; 2) employ fixed network structures, which re-
strict the diversity of weather-specific knowledge. In this
paper, we propose a Language-driven Restoration frame-
work (LDR) to alleviate the aforementioned issues. First,
we leverage the power of pre-trained vision-language (PVL)
models to enrich the diversity of weather-specific knowl-
edge by reasoning about the occurrence, type, and severity
of degradation, generating description-based degradation
priors. Then, with the guidance of degradation prior, we
sparsely select restoration experts from a candidate list dy-
namically based on a Mixture-of-Experts (MoE) structure.
This enables us to adaptively learn the weather-specific
and shared knowledge to handle various weather conditions
(e.g., unknown or mixed weather). Experiments on exten-
sive restoration scenarios show our superior performance
(see Fig. 1). The source code will be made available.

1. Introduction
Imaging under adverse weather conditions leads to unpleas-
ant image degradation, posing challenges for vision-based
systems like self-driving cars [15, 43] and outdoor surveil-
lance systems [9, 12], that require 24/7 service regardless of
rain [6, 13, 24], haze [14, 35, 38], and snow [4, 27, 29]. To
meet the safety demand, compared to tackling each type of
weather condition with independent models, the joint task
process, i.e., all-in-one framework, has a broader applica-
tion scenario [17, 32].

Formally, degraded images can be modeled as masked
additive combination of clean images and degradation
residuals[32]. Consequently, several works [5, 21, 39] use
a single network for all degradation types. Though shared
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Figure 1. Score (PSNR and SSIM) comparisons. We compare
our model (red) with the top 2 (blue and green) baselines on
benchmark datasets with various weather scenarios. Superscripts
besides evaluation metrics are used to differentiate benchmark
datasets.

knowledge is learned for restoration, they neglect that dif-
ferent degradations still hold different mathematical formu-
lations, e.g., transmission map produced by scattering effect
in haze model [38] is unnecessary for raindrop model [34].

Hence, several works [17, 32, 33, 44, 51] use differ-
ent sub-networks for weather-specific knowledge learning.
However, auxiliary supervisions are required to assign the
sub-networks, e.g., degradation types [32] or depth maps
[51]. Furthermore, the fixed sub-network architecture of
existing methods restricts the diversity of learned weather-
specific knowledge and their ability to handle images with
various weather conditions [40, 49], such as images de-
graded by weather severity or conditions that have not been
encountered before [1, 34], or mixed weather conditions
like snow with haze in real-world scenarios.

In this paper, we question – can we restore the image de-
graded by various weather conditions by adaptive learning
of diverse weather-specific knowledge and shared knowl-
edge, without requiring ground truth weather types and
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Figure 2. Ineffective computations of Transweather [39]. We find the activity of some parameters in Transweather [39] are degradation
dependent, and zero-outing computations for those inactivate parameters barely affect image restoration. (a) 7-th channel, (b) 10-th
channel, and (c) 54-th channel of feature maps from Transweather, the brighter, the larger activation value, are activated for degradation
of rain, raindrop, and snow. We show the (d) degraded images, (e) restorations from Transweather, and (f) restorations by zero-outing
inactive channels. (g) From top to bottom, distribution of L2 norm for the three channels across all images in the All-weather dataset [21].

severity data? We answer it by our language-driven all-
in-one restoration (LDR) framework in two aspects.

1) The knowledge within the feature space of a pre-
trained vision-language (PVL) model can benefit various
tasks, while its potential in our task is still under explo-
ration. A straightforward way is to use the PVL model
as the image degradation classifier. In contrast, we go one
step further by reasoning diverse weather-specific knowl-
edge from the feature space of the PVL model beyond the
type of weather conditions.

We start by formulating a question prompt to query the
occurrence, type, and severity of degradation in a degraded
image. The obtained degradation prior describes what,
where, and severity of degradations in high-level textual se-
mantics. Then, we translate the high-level degradation prior
to a 2D degradation map by aligning the prior with the de-
graded image. This degradation map provides a pixel-wise
representation of the diverse knowledge of image degrada-
tion from the PVL model.

2) We then unleash the potential for various weather re-
moval with the guidance of degradation maps. Observing
model parameters are weather-specific, e.g., the rain-related
parameters are usually inactive for unrelated degradations,
and zero-outing the computations of unrelated parameters
also barely affects the restoration quality. This observa-
tion, illustrated in Fig. 2, inspired us to bypass computa-
tions for parameters unrelated to the specific weather type
and severity during image restoration. With the assistance
of MoE structure [28, 37], our LDR framework selects ex-
perts dynamically for restoration, therefore, ensuring adap-
tive learning of weather-specific knowledge which is not
limited to a fixed network architecture.

Specifically, we maintain a candidate list of restora-
tion experts and utilize the degradation map to sparsely
select the most related restoration experts for each degra-
dation. By applying the selected expert pixel-wisely to

restore weather-specific features, we create flexible and
degradation-adaptive expert combinations/model architec-
tures for restoration.

Though we can have a preliminary restoration from ex-
perts restored feature, considering image regions with simi-
lar values from the degradation map tend to benefit restora-
tion features of each other, we re-use the degradation map
to aggregate the restoration features, and improve the lo-
cality of the obtained restoration by a simple convolutional
feedforward network. Our main contributions are:
• We present an LDR framework to adaptively remove var-

ious adverse weather conditions in an all-in-one solution;
• We propose a degradation map measurement module

for extracting diverse weather-specific knowledge from a
pre-trained vision-language model;

• We propose a Top-K expert restoration module, sparsely
and adaptively computing pixel-wise restoration features.
The overall comparison in Fig. 1 shows the superiority of

our framework for handling various degradations compared
to state-of-the-art methods.

2. Related Work
Adverse Weather Restoration. The field of adverse
weather restoration encompasses two distinct approaches:
task-specific methods [2, 3, 23, 45, 46] train the model in-
dependently for each individual degradation and all-in-one
frameworks [5, 17, 21, 32, 39, 41, 48, 51] develop a single
unified model capable of handling various adverse weather
degradations. A prevalent strategy for the all-in-one frame-
work is to build upon task-specific models by employing
multi-task learning techniques [41, 48, 51] or knowledge
distillation [5] that consolidates multiple task-specific net-
works into a single network. Nevertheless, these methods
typically rely on fixed computations, and the computation
effectiveness is discounted as model parameters are sepa-
rately and degradation-dependently activated.
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Figure 3. The pipeline of our method. Given the input degraded image Id, we aim to recover the clean image Îc. To tackle various adverse
weather conditions, we format a question prompt T, and query a pre-trained vision-language (PVL) model with Id and T, to estimate the
degradation type and severity. The generated descriptions Ptxt are transformed by a multilayer perceptron (MLP) to get the degradation
prior Pemb. Meanwhile, we extract a feature map X from the input degraded image Id. A degradation map M is computed by cross-
attending X with the prior Pemb, describing pixel-wise degradation pattern. We maintain a trainable candidate list of convolution filters,
{Fn|n = 1, ..., N}, and denote them as experts. We first parse the degradation map M into a score map S via a feedforward network
FFNm and a softmax layer, and then use S to find the best K experts describing the degradation of X. Best experts are convolved with X to
generate an intermediate feature map X̂int. Finally, a cross-attention layer is used to aggregate X̂int with the guidance of the degradation
map M. We improve the feature locality with a feedforward network FFNint, and the output X̂ is decoded to the clean image Îc.

Conversely, several methods [17, 32, 51] have been de-
veloped to overcome these limitations by focusing on learn-
ing weather-specific knowledge. These methods utilize in-
dicators like degradation types [32] or depth maps [51] dur-
ing training to categorize and direct images to appropriate
sub-networks for restoration. Though AirNet [17] learns
weather-specific knowledge with contrastive learning. Its
fixed sub-network designs can only restore images with cer-
tain degradation types, and does not generalize to unseen
weather degradations, e.g., rain mixed with haze. Further-
more, these mentioned works overlook the fact that vary-
ing levels of degradation severity also warrant adaptively
tailored computational processes, for a specific degradation
type. Diverging from previous methods, we harness PVL
models to reason both the type and severity of degradations,
enabling adaptive restoration with dynamic sub-networks
informed by this rich, weather-specific knowledge.
Sparse Mixture of Expert. The concept of expert
models [28] is defined as a subset of model parame-
ters/computation, where each expert is specialized in han-
dling distinct aspects of the input data. The sparse mix-
ture of experts usually employs a routing mechanism [37]
to dynamically and adaptively forward input to a subset of
these experts, bypassing unnecessary and irrelevant compu-
tations. Given fixed computation costs, due to the sparsity,
this framework can readily scale the number of experts to
improve the model capability that has been widely verified
in the domain of natural language processing [10, 37, 52]
and computer vision [7, 11, 22, 30]. We study a prior de-

rived from a PVL model to dynamically select experts, and
adaptively apply expert to restore degraded images.

Vision-language Model. With the release of ChatGPT,
remarkable reasoning abilities of large language model
(LLM) [16, 18, 26, 31, 36, 50] have been shown. It moti-
vates the vision-language community to transfer the reason-
ing abilities to visual data. A common pipeline is to project
an image to a joint space of LLM [19, 25, 26], and feed
the projected image alongside user-provided text for condi-
tional text generation. This paper proposes to leverage the
PVL (e.g., [16]) to generate prior of an adverse weather de-
graded image for adaptive image restoration.

3. Method

Overview. Given an input image Id degraded by adverse
weather, we aim to recover the corresponding clean im-
age Îc. Our method adaptively recovers Îc with degrada-
tion prior Pemb obtained from a pre-trained vision-language
(PVL) model. The overall architecture is shown in Fig. 3.

To derive degradation prior Pemb, we query a PVL model
with a question prompt T to reason about the occurrence,
type, and severity of degradation in the input image Id, out-
putting Ptxt. Then a mapping network projects Ptxt to Pemb.
Meanwhile, we encode Id to X by using an encoder.

We adaptively restore X into X̂ in the embedding space,
and decode X̂ to a restored image Îc, with three steps: i)
degradation map measurement, measuring degradation for
each pixel of Id by using the degradation prior Pemb; ii)



Please describe about the weather
in the picture.

The weather in the picture is rainy, as
evidenced by the presence of raindrop
on the cars and the overall atmosphere.

Please describe the type of weather,
intensity, and obscured areas in the
picture.

The weather in the image is snowy, the
intensity of the snowfall is high. The
area covered by the snow includes a
residential neighborhood, with houses
in the scene are obscured by snowflakes.

Figure 4. Examples text descriptions from LISA [16] for reasoning
weather degraded images.

top-K expert restoration, selecting expert/parameters from
a trainable candidate list of convolution filters according to
the degradation map M, and convolving with X to get in-
termediate restoration features X̂int; iii) restoration feature
aggregation, deriving X̂ by pixel-wisely aggregating X̂int

with respect to the degradation map M, and improving the
feature locality with a feedforward network. Finally, X̂ is
decoded to get the restored image Îc.

3.1. Degradation Prior

Degradation Prior Generation. We leverage the con-
text learning capability of the PVL model (e.g., [16]) to
reason diverse degradation knowledge of the degraded im-
age Id with a question prompt T. We format the question
prompt T inspired by the chain-of-thought reasoning that
makes the model to identify the occurrence, type, and sever-
ity of degradation. In Fig. 4, we provide the text description
examples obtained by using different prompts. The gener-
ated descriptions Ptxt are defined as

Ptxt = VL(Ic,T) , Ptxt ∈ RL×Cvl
, (1)

where VL(·, ·) is the PVL model, L is the description
length, and Cvl is the channel dimension. To preserve the
representation capabilities of PVL, we prune out the text
description output layer of PVL, and use the embedding be-
fore the output layer as Ptxt.

Degradation Prior Embedding. We align Ptxt to the em-
bedding space with size C of our restoration model by using
a multilayer perceptron network MLP(·). We have

Pemb = MLP(Ptxt) , Pemb ∈ RL×C . (2)

The Pemb is then used as the degradation prior in our
restoration model to adaptively recover Îc.

3.2. Language-driven Restoration Model

We use an encoder-decoder architecture [8] as a backbone,
and adaptively recover Îc in the embedding space with Pemb

and X (the encoded embedding of Id) as inputs.

(a) Id (b) X (c) M (d) X̂int (e) X̂
Figure 5. Visualization of X, M, X̂int and X̂. Without cherry-
picking, we show the channel with maximum gradients. From (b)
X to (c) M, degraded regions are highlighted, and regions with
similar degradation severity have similar activation values on the
feature map M. From (b) X to (d) X̂int and (e) X̂, degradations
are removed step by step.

Degradation Map Measurement. The degradation prior
Pemb is text description related with high-level semantics.
However, for X ∈ RH×W×C with height H , width W ,
and channel C, the degradation is usually pixel-wise and
distinct in severity. To allow pixel-wise computation of ad-
verse weather removal, we measure the 2D degradation map
M for X by the cross-attention mechanism,

Q = XWq1 , K = PembWk1 , V = PembWv1 , (3)

M = Attention(Q,K,V) = Softmax
(
QK⊤)V , (4)

where Wq1 , Wk1 , and Wv1 ∈ RC×C are linear pro-
jection matrices for obtaining the query, key, and value.
Our cross-attention mechanism first computes the seman-
tic alignments between X and Pemb via Softmax

(
QK⊤),

and then transforms Pemb into a 2D degradation map M that
describes pixel-wise degradation of X. We visualize X and
M in Fig. 5. The regions of similar degradation severity
have been individually highlighted, by applying Eq. (4).
Top-K Expert Restoration. Not all pixels degrade
equally, and we adaptively restore each of them by using
pixel-wise degradation knowledge within M. We have N
candidate experts (convolution filters), {Fn|n = 1, ..., N},
for diverse adverse weather conditions, where each candi-
date Fn is expertise at generating restoration features for
specific degradation types or severities (see 4.2 ). With the
degradation map M, we select experts for each pixel of X.

Specifically, the degradation map M ∈ RH×W×C is
fed to a feedforward network FFNm, followed by a Soft-
max layer along the last dimension, to output a normal-
ized pixel-wise selection score S ∈ RH×W×N , i.e., S =
Softmax(FFNm(M)). For a pixel with location (i, j), i ∈
[1, H], j ∈ [1,W ], S(i, j) ∈ RN and S(i, j, n) measures
how likely the n-th expert Fn can be used to describe the
degradation of X(i, j).

To find the best experts describing the degradation of
X(i, j), we compute the Top-K scores of S(i, j) and record



Table 1. Quantitative comparison on the All-weather dataset. We respectively color the best and the second-best methods in red and blue.

Type Method
Rain Snow Raindrop Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
BestT + VL 24.33 0.860 28.47 0.872 29.23 0.895 27.34 0.876
BestT + GT 27.04 0.913 30.61 0.900 31.63 0.936 29.76 0.916

G
en

er
al

MPRNet [45] 23.08 0.839 27.69 0.849 28.75 0.879 26.51 0.856
NAFNet [3] 23.21 0.840 27.68 0.847 28.90 0.890 26.60 0.859

Uformer [42] 22.93 0.835 27.50 0.838 28.51 0.871 26.31 0.848
Restormer [46] 23.37 0.845 27.81 0.850 29.10 0.890 26.76 0.862

GRL [23] 23.31 0.842 27.79 0.849 29.05 0.888 26.72 0.860

A
ll-

in
-O

ne

All-in-One [21] 24.71 0.898 28.33 0.882 31.12 0.927 28.05 0.902
AirNet [17] 23.12 0.837 27.92 0.858 28.23 0.892 26.42 0.862

TUM [5] 23.92 0.855 29.27 0.884 30.75 0.912 27.98 0.884
Transweather [39] 23.18 0.841 27.80 0.854 28.98 0.902 26.65 0.866

WGWS [51] 25.31 0.901 29.71 0.894 31.31 0.932 28.78 0.909
Ours 26.92 0.912 30.79 0.905 31.54 0.933 29.75 0.916

corresponding indices as the best experts. The best experts
restored feature for location (i, j) is given by,

X̂int(i, j) =

K∑
k=1

S(i, j, ρ(k)) · E(i, j, ρ(k)) , (5)

E(i, j, ρ(k)) =
∑

∆i,∆j

X(i+∆i, j +∆j) · Fρ(k)(∆i,∆j) ,

where ρ(k) is the index of the selected k-th expert.
E(i, j, ρ(k)) is the convolution result of X(i, j) and the k-
th expert Fρ(k), and (∆i,∆j) iterates over the convolution
kernel size. S(i, j, ρ(k)) are weights for prioritizing dif-
ferent experts. With our pixel-wise Top-K experts, the in-
termediate restoration feature X̂int for each pixel of X is
adaptively generated.

Restoration Feature Aggregation. Pixels with similar
degradation information in M potentially benefit each other
in deriving the restoration X̂. We compute the compatibility
between degradation prior M and restoration features X̂int,
and aggregate weighted restoration features pixel-wisely by
using the cross-attention mechanism,

Q = MWq2 , K = X̂intWk2 , V = X̂intWv2 , (6)

X̂ = FFNint(Attention(Q,K,V)) , (7)

where FFNint is a feedforward convolutional network to im-
prove the feature locality. Finally, X̂ is decoded to the
restoration Îc. In Fig. 5, we compare X̂int and X̂, and find
that X̂ is cleaner than X̂int, as pixels with similar degrada-
tion measurements benefit each other in the restorations.

3.3. Loss Function

We train our network with Charbonnier loss Lchar and
gradient-level edge loss Ledge, to penalize the deviation of
restoration from ground truth clean image, and encourage

the consistent image gradients. We have Lchar as

Lchar =

√
∥Ic − Îc∥2 + ε2 , (8)

where ε = 10−4 is a constant in all experiments. The Ledge
is

Ledge =

√
∥∇Ic −∇Îc∥2 + ε2 , (9)

where ∇ is the laplacian gradient operator. With a balance
parameter λ, the total loss is given by

Ltotal = Lchar + λLedge . (10)

4. Experiments and Analysis
Implementation Details. Our model is implemented us-
ing the PyTorch framework and all experiments are con-
ducted on an RTX A6000 GPU. We train our network with
batch size 4 and 4 × 106 iterations using the ADAM op-
timizer. The learning rate is decayed from 2 × 10−4 to
1 × 10−6 by cosine annealing strategy. In training, images
are randomly cropped to size 256× 256, and λ = 0.05.
Datasets. Our experiments are conducted on both syn-
thetic dataset and real dataset, i.e., All-weather dataset
[21] and WeatherStream [47] dataset. All-weather dataset
comprises 18, 609 training images and 17, 609 testing im-
ages, and is composed of subsets from Outdoor-rain [20],
Snow100K-L [27], and Raindrop [34], corresponding to
rain, snow, and raindrops weather conditions respectively.
WeatherStream dataset is a real-world dataset that has three
weather conditions, i.e., rain, snow, and fog, with a total of
176, 100 training images and 11, 400 testing images.
Evaluation Metrics. We use an average of peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) as
our evaluation metrics. The higher, the better.
Baseline Methods. We compare with the state-of-the-art
(SOTA) general and all-in-one methods. For general meth-
ods, task-specific methods are trained with multi-task learn-
ing of different weather conditions, i.e., MPRNet [45],



Table 2. Quantitative comparison on the WeatherStream dataset. We color the best and the second-best methods in red and blue.

Type Method
Rain Haze Snow Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
BestT + VL 21.20 0.781 21.60 0.755 20.32 0.772 21.04 0.769
BestT + GT 23.95 0.810 22.97 0.804 22.70 0.828 23.21 0.814

G
en

er
al

MPRNet [45] 21.50 0.791 21.73 0.763 20.74 0.801 21.32 0.785
NAFNet [3] 23.01 0.803 22.20 0.803 22.11 0.826 22.44 0.811

Uformer [42] 22.25 0.791 18.81 0.763 20.94 0.801 20.67 0.785
Restormer [46] 23.67 0.804 22.90 0.803 22.51 0.828 22.86 0.812

GRL [23] 23.75 0.805 22.88 0.802 22.59 0.829 23.07 0.812

A
ll-

in
-O

ne

All-in-One [21] - - - - - - - -
AirNet [17] 22.52 0.797 21.56 0.770 21.44 0.812 21.84 0.793

TUM [5] 23.22 0.795 22.38 0.805 22.25 0.827 22.62 0.809
Transweather [39] 22.21 0.772 22.55 0.774 21.79 0.792 22.18 0.779

WGWS [51] 23.80 0.807 22.78 0.800 22.72 0.831 23.10 0.813
Ours 24.42 0.818 23.11 0.809 23.12 0.838 23.55 0.822

Raindrop

Snow

Rain

TUM [5] Transweather [39] WGWS [51] Ours

TUM [5] Transweather [39] WGWS [51] Ours

TUM [5] Transweather [39] WGWS [51] Ours

Input GT GRL [23] AirNet [17]

Input GT GRL [23] AirNet [17]

Input GT GRL [23] AirNet [17]

Figure 6. Qualitative comparison on the All-weather dataset. The first column shows degraded images, while the crops for the bounding
box regions of degraded images, ground truth, restoration from SOTA methods and our method are shown in the subsequent columns.

NAFNet [3], Uformer[42], Restormer [46], and GRL [23].
All-in-one methods are All-in-One [21], AirNet[17], TUM
[5], Transweather [39], and WGWS [51].

4.1. Experimental Results

Quantitative Comparison. We compare with the SOTA
general and all-in-one methods on the All-weather and
WeatherStream datasets in Tab. 1 and Tab. 2, respectively.
Our method achieves the best performance.

Furthermore, we create two strong baselines: i) BestT
+ VL. We use a PVL model for zero-shot adverse weather
classification, and select the best task-specific methods for
restoring degraded images; ii) BestT + GT. The ground
truth adverse weather type is used to select the best task-
specific method for image restoration. We find that i) Our
method significantly outperforms ‘BestT + VL’, though it
uses the same PVL as our model and uses multiple mod-
els for different adverse weather conditions. This shows
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Figure 7. Qualitative comparison on the WeatherStream dataset. The first column shows degraded images, while the crops for the bounding
box regions of degraded images, ground truth, restoration from SOTA methods and our method are shown in the subsequent columns.

that non-trivial designs are required for effectively leverag-
ing the PVL model in all-in-one adverse weather removal;
ii) Although ‘BestT + GT’ outperforms most SOTA general
and all-in-one methods, our method still achieves compet-
itive performance compared to it. This indicates: 1) the
benefit of accessing prior knowledge of adverse weather
conditions, and 2) our method has learned the shared and
weather-specific knowledge adaptively by selecting sparse
experts dynamically.
Qualitative Comparison. We compare with the SOTA
methods on restoring images degraded by different adverse
weather conditions. The results are given in Fig. 6 and
Fig. 7. Our method consistently restores clearer images than
SOTA methods under different weather conditions.

4.2. Ablation studies and Discussions

We validate the effectiveness and components of our frame-
work on the All-weather dataset. Due to space limitations,
the evaluations for PVL methods, prompt questions, expert
designs, and mixed degradations are given in the supple-
mentary material.
Model Architecture. We study the effectiveness of
the degradation map measurement (DMM), top-K ex-
pert restoration (TER), and restoration feature aggregation

Table 3. The effectiveness of our model components.
DMM TER RFA PSNR SSIM

✗ ✓ ✗ 27.93 0.882
✗ ✗ ✓ 28.37 0.889
✓ ✓ ✗ 28.25 0.890
✓ ✗ ✓ 29.11 0.902
✗ ✓ ✓ 28.55 0.895
✓ ✓ ✓ 29.75 0.916

Table 4. Comparisons on the All-weather dataset with degradation
severity of slight, moderate, and heavy.

Method
Slight Moderate Heavy

PSNR SSIM PSNR SSIM PSNR SSIM
AirNet 27.59 0.895 26.49 0.865 24.50 0.818
WGWS 29.74 0.921 28.77 0.910 27.14 0.886

Ours 30.46 0.925 29.78 0.918 28.38 0.899

(RFA) modules. The results are given in Tab. 3. The best
performance is achieved by using all modules.

Degradation Severity. We use the PVL model to parti-
tion the All-weather dataset [21] into three subsets based
on degradation severity: slight, moderate, and heavy. We
then compare our results with those of AirNet and WGWS
in Tab. 4. Our method shows significant improvement over
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Figure 8. The usage frequencies of experts for different degradation types. For example, Expert 8, 11, and 15 focuses on raindrop, rain,
and snow, respectively. Expert 12 handles all types of degradation. Please refer to Fig. 9 for visualization.

(a) Expert 8 (b) Expert 11 (c) Expert 12 (d) Expert 15

Figure 9. Sample image regions, activating different experts. We show regions with highest selection scores for experts 8, 11, 12, and 15
on the All-weather dataset.

(a) Degraded (b) AirNet (c) WGWS (d) Ours

Figure 10. From the first to last rows, the degradation is rain, rain-
drop, snow, and haze, respectively. From left to right, (a) degraded
images are restored by (b) AirNet, (c) WGWS, and (d) our method.

AirNet [17] and WGWS [51] in the heavily degraded sub-
set. This indicates the effectiveness of reasoning with di-
verse weather-specific knowledge, such as severity.
Pixel-wise Expert. Different regions of the same de-
graded image often exhibit varying degrees of degradation
severity, and should be adaptively and pixel-wisely restored.
We use the degradation prior provided by the PVL model to
select the same expert for the degraded image. It shows a
0.33 dB/0.07 decrease in PSNR/SSIM, indicating the neces-
sity of selecting experts pixel-wisely.
Adaptive Adverse Weather Removal. We study the
model response to different adverse weather degradation by
measuring the usage of our experts. Fig. 8 shows the us-

age for rain, snow, and raindrop. We find that there are ex-
perts for weather-specific knowledge and shared knowledge
among degradation, such as Expert 8, Expert 11, Expert 12,
and Expert 15. We visualize the image patches selecting the
four experts in Fig. 9, where Expert 8, Expert 11, and Ex-
pert 15 are selected by image regions with raindrop, rain,
and snow degradation, and Expert 12 is selected by image
regions with sky in all types of degradation.
Model Ability Under Complex Weather Condition. We
test our model trained on the All-weather dataset with real
images degraded by rain, raindrop, snow, and haze, as
shown in Fig. 10. We compare our results with the two
most competitive methods, AirNet and WGWS. Our model
successfully disentangles weather-specific knowledge and
generalizes to restore images degraded by haze.

5. Conclusion and Broader Impact
We have proposed an LDR framework that adaptively re-
moves various adverse weather conditions in an all-in-one
solution. Our key insight is to leverage a pre-trained vision-
language model to reason diverse weather-specific knowl-
edge in a degraded image. We then use this knowledge
to restore a clean image with three modules: degradation
map measurement, Top-K expert restoration, and restora-
tion feature aggregation. Experiments on standard bench-
mark datasets demonstrate that our method outperforms
past works by a large margin.
Broader Impact. Our method is promising to be devel-
oped as an image restoration foundation model, prompting
by degradation prior generated by a vision-language model.
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