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Abstract

Monocular depth estimation (MDE) is a fundamental topic of geometric computer
vision and a core technique for many downstream applications. Recently, several
methods reframe the MDE as a classification-regression problem where a linear
combination of probabilistic distribution and bin centers is used to predict depth.
In this paper, we propose a novel concept of iterative elastic bins (IEBins) for
the classification-regression-based MDE. The proposed IEBins aims to search for
high-quality depth by progressively optimizing the search range, which involves
multiple stages and each stage performs a finer-grained depth search in the target
bin on top of its previous stage. To alleviate the possible error accumulation during
the iterative process, we utilize a novel elastic target bin to replace the original
target bin, the width of which is adjusted elastically based on the depth uncertainty.
Furthermore, we develop a dedicated framework composed of a feature extractor
and an iterative optimizer that has powerful temporal context modeling capabilities
benefiting from the GRU-based architecture. Extensive experiments on the KITTI,
NYU-Depth-v2 and SUN RGB-D datasets demonstrate that the proposed method
surpasses prior state-of-the-art competitors. The source code is publicly available
at https://github.com/ShuweiShao/IEBins.

1 Introduction

Monocular depth estimation (MDE) is a long-standing and fundamental topic in geometric computer
vision, with many applications in autonomous driving, 3D reconstruction, scene understanding, etc.
It consists in inferring the depth map from a single RGB image, which is ill-posed and has the
challenge of scale ambiguity, because the same 2D image can be projected from infinitely many
3D scenes. Recently, more and more learning-based approaches have been proposed to promote
the development of MDE [1–7]. Without loss of integrity, these methods can be grouped into three
categories: regression, classification and classification-regression [8].

Regression is the most primitive and straightforward formulation [1, 4, 9–12, 5], which directly
generates continuous pixel-wise depth under the supervision of a regression loss. Despite its great
success as a universal paradigm, the regression-based model suffers from unsatisfactory results [2].
Classification is proposed in [2] and [13] to formulate the MDE as per-pixel classification and predict
the optimal depth interval. More specifically, it discretizes the full depth range into multiple intervals
(bins) in uniform/Log-uniform space (Fig. 1 (a) and (b)) and takes the bin center (depth candidate) of
classified target bin as the final depth prediction. While the classification makes the MDE easier and
significantly improves the model performance, the poor visual quality with discontinuity artifacts
tends to appear [3].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

ar
X

iv
:2

30
9.

14
13

7v
1 

 [
cs

.C
V

] 
 2

5 
Se

p 
20

23

https://github.com/ShuweiShao/IEBins


(a) Uniform Bins (c) Adaptive Bins(c) Adaptive Bins(b) Space Increasing Bins(b) Space Increasing Bins(b) Space Increasing Bins

Depth Candidate

Bin Edge

(d) Iterative Elastic Bins

Elastic Target Bin

Target Bin Target Bin

Elastic Target Bin

Target Bin

Elastic Target Bin

Figure 1: Illustration of different bin types comprising uniform bins [2], space increasing bins [2],
adaptive bins [3] and the proposed iterative elastic bins.

In order to overcome the discontinuity artifacts in classification, some methods [3, 14, 8, 15, 16]
reframe the MDE as a per-pixel classification-regression problem, learning the probabilistic distribu-
tion on each pixel and using the linear combination with depth candidates as the final depth prediction.
Theoretically, it can achieve the sub-pixel depth estimation. On top of that, Bhat et al. [3] noticed
the extreme fluctuations in depth distribution across different scenes and proposed to derive adaptive
bins (Fig. 1 (c)) from the image content. Li et al. [8] and Bhat et al. [15] further improved [3] by
disentangling bins generation and probabilistic distribution learning or performing local predictions
of depth distributions in a gradual step-wise manner. Moreover, Agarwal et al. [16] developed a bin
center predictor that uses pixel queries at the coarsest level to predict bins.

In this paper, we introduce a novel concept termed iterative elastic bins (IEBins, Fig. 1 (d)), tailored
for the classification-regression-based MDE. The IEBins leverages multiple small number of bins,
instead of one standard number of bins, to search for high-quality depth by progressively reducing
the search range. To specify, the proposed IEBins involves multiple stages, where each stage predicts
depth at different granularities and performs a finer-grained depth search in the target bin (the bin in
which the predicted depth is located in our case) of its previous stage. Unfortunately, the depth ground-
truth may fall outside the target bin due to wrong depth predictions, resulting in unstable optimization
and degraded accuracy. To mitigate the error accumulation during iterations, we elastically adjust
the width of the target bin according to the depth uncertainty that indicates the potential depth errors.
Inspired by [17], we utilize the variance of the probabilistic distribution to quantify the uncertainty.
Last but not least, we develop a dedicated framework (Fig. 2) consisting of two main components: a
feature extractor that generates strong feature representations and a gated recurrent unit (GRU)-based
iterative optimizer with powerful temporal context modeling capabilities that predicts the per-pixel
probabilistic distribution from its hidden state for the depth classification-regression.

To summarize, our main contributions are three-fold:

• We introduce a novel iterative elastic bins strategy for the classification-regression-based
MDE. The IEBins performs an iterative elastic search using multiple small number of bins
in light of the depth uncertainty.

• We develop a framework to instantiate the proposed IEBins, where a feature extractor attains
strong feature representations and a GRU-based iterative optimizer predicts the probabilistic
distribution.

• Extensive experiments are conducted on the KITTI [18], NYU-Depth-v2 [19] and SUN
RGB-D [20] datasets, and the experimental results show that the proposed method exceeds
previous state-of-the-art competitors.

2 Related work

Monocular depth estimation. Learning-based MDE has witnessed tremendous progress in recent
years. Saxena et al. [23] proposed a pioneering work that uses Markov Random Field to capture
critical local- and global-image features for depth estimation. Later, Eigen et al. [1] introduced
a convolutional neural network (CNN)-based architecture to attain multi-scale depth predictions.
Since then, CNNs have been extensively studied in MDE. For instance, Laina et al. [24] utilized
residual CNN [25] for better optimization. Recently, Transformer [26] has attracted widespread
attention in the computer vision community [27–29]. Following the success of visual Transformer in
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Figure 2: An overview of the whole framework. The upsample stands for the pixel shuffle [21]. The
projection is achieved using four 3× 3 convolutional layers followed by the ReLU activation [22].

other tasks, Yang et al. [10], Ranftl et al. [30] and Yuan et al. [5] replaced CNN with Transformer,
further improving the performance. However, the above methods suffer from sub-optimal solutions
induced by the inherent drawback of regression [2]. Fu et al. [2] and Cao et al. [13] proposed
to formulate MDE as a classification problem and discretized the full depth range into multiple
bins to predict the optimal depth interval. Diaz et al. [31] softened the classification label in [2]
during the training phase. In addition, Bhat et al. [3], Johnston et al. [14], Li et al. [8], Bhat et
al. [15] and Agarwal et al. [16] reframed the MDE as per-pixel classification-regression to mitigate
the discontinuity artifacts caused by depth discretization. Among them, [3] introduced an adaptive
bins strategy to boost the performance. In contrast, we propose an iterative elastic bins paradigm
for the classification-regression-based MDE, which uses multiple small number of bins rather than
one standard number of bins like [3]. [15] also refines the binning structure in an iterative manner.
However, [15] divides all bins from the previous stage at each stage, and when the stage increases,
the number of bins increases, while the proposed IEBins locates and divides the target bin only, and
the number of bins is not changed at different stages.

Iterative refinement. Recently, Teed et al. [32] proposed to iteratively refine a displacement vector
field through the GRU for optical flow estimation, emulating the first-order optimization. This idea
gradually receives attention in other tasks, such as stereo [33, 34], structure from motion [35] and
scene flow [36]. In this paper, we deploy a GRU-based iterative optimizer to predict the per-pixel
probabilistic distribution, where the hidden state is updated at each stage for more accurate estimation.

3 Methodology

In this section, we first introduce the iterative elastic bins tailored for the classification-regression-
based MDE. Then, we demonstrate a detailed description regarding the feature extractor and iterative
optimizer in our framework. Finally, we present the training loss function.

3.1 Iterative Elastic Bins

The proposed IEBins embodies the idea of iterative division of bins, and is composed of two parts,
initialization and update. In the initialization stage, we perform a coarse and uniform discretization
of the full depth range. During each subsequent stage, we follow an iterative process to locate and
uniformly discretize the target bin by using the target bin as the new depth range. The details are
presented below.

Initialization. To initialize the IEBins, we discretize the full depth range [dmin,dmax] into N bins in
the uniform space,

en = dmin + nB, n = 0, 1, ..., N, (1)
with

B =
dmax − dmin

N
, (2)

3



Stage 1 Stage 3Stage 2 Stage 4 Stage 5 Stage 6

Figure 3: Illustration of depth and uncertainty maps for each stage. The upper row is depth maps,
which we display using the bin center of every target bin to better visualize the refinement process.
The lower row is uncertainty maps (yellow/red: high/highest uncertainty; blue: low uncertainty).

where en denotes the n-th bin edge, B denotes the bin width, dmax and dmin are set to 80 and 0.1, and
10 and 0.1 for KITTI [18] and NYU-Depth-v2 [19] datasets, respectively, and N is set to 16 when
not otherwise specified, a significantly fewer number of bins than the 256 bins used in AdaBins [3].
As we cannot directly use discrete bins to predict depth, we take the bin centers to represent the depth
candidates of bins,

Dn =
en + en+1

2
, n = 0, 1, ..., N − 1, (3)

where Dn denotes the n-th depth candidate. Once the per-pixel probabilistic distribution associated
with depth candidates is predicted, we can acquire a depth prediction via their linear combination

D̂ (p) =
N−1∑
n=0

Dn · Pn (p) , (4)

where D̂ (p) denotes the predicted depth, p denotes the pixel coordinate and Pn denotes the n-th
depth probability.

Update. Each subsequent stage searches at a finer-grained granularity in the target bin of its previous
stage. The target bin represents the corresponding bin in which the predicted depth is located, which
we obtain by comparing the predicted depth with bin edges

en ≤ D̂ (p) < en+1 (5)

and denote as [en,en+1]. However, as discussed in the introduction section, the depth ground-truth
may fall outside the target bin due to depth prediction errors. In this case, the errors will gradually
accumulate as the stage increases, resulting in unstable optimization and decreased accuracy. To
account for such a failure case and make the paradigm more robust, we propose to leverage the elastic
target bin to update the depth candidates. The width of the elastic target bin is adjusted flexibly based
on the depth uncertainty reflecting the likelihood of depth inaccuracies. Inspired by [17], we capture
the uncertainty via the variance of the probabilistic distribution. In particular, the variance V̂ (p) is
calculated as

V̂ (p) =
N−1∑
n=0

(
Dn − D̂ (p)

)2
· Pn (p) . (6)

The corresponding standard deviation is σ̂ (p) =
√

V̂ (p). Given the target bin [en,en+1] and standard
deviation σ̂ (p), we can acquire the elastic target bin by

[en − κσ̂ (p), en+1 + κσ̂ (p)] (7)

where κ is a coefficient that determines the error tolerance and is set to 0.5. For a pixel with severe
depth errors, the standard deviation will become larger such that the elastic target bin has higher
immunity against errors. On top of that, we renew dmin and dmax as en − σ̂ (p) and en+1 + σ̂ (p),
respectively. Through Eqs.1, 2, 3 and 4, we can achieve the updated depth candidates and prediction.
The update step will be repeated until reaching to the final stage. It should be noted that although we
do not show p behind D in above formulas, the depth candidates D can actually be spatially-varying
due to different elastic target bins in subsequent update steps. In Fig. 3, we display examples of depth
maps and associated uncertainty maps at each stage.
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3.2 Feature Extractor

The feature extractor adopts an encoder-decoder structure with skip-connections. The encoder uses
the recently proposed Swin-Transformer family backbones [29, 37], which take an RGB image of
size H ×W as input and generate a four-level feature pyramid. Then, the skip-connections propagate
the pyramid features into the decoding phase. The decoder uses three neural conditional random field
(CRF) modules [5] to capture the vital long-range correlation. We alternate between the neural CRF
module and pixel shuffle [21] up to the H

4 × W
4 resolution. Next, the H

4 × W
4 resolution feature maps

from the encoder and the decoder are respectively sent to the iterative optimizer as the context feature
and the initialization of GRU hidden state.

3.3 Iterative Optimizer

To efficiently predict the probabilistic distribution at each stage, we deploy a GRU-based iterative
optimizer taking inspiration from [32], since the GRU is capable of retaining the information from
history stages and can fully exploit the temporal context during iterations. The optimizer operates at
H
4 × W

4 resolution.

More specifically, we first project the depth candidates D into the feature space using four 3 × 3
convolutional layers and each convolutional layer is followed by a ReLU activation [22]. We then
concatenate the projected feature and the context feature to constitute a tensor Ik as the input. The
structure inside GRU is

zk+1 = sigmoid
(
Conv5×5

([
hk, Ik

]
,Wz

))
, (8)

rk+1 = sigmoid
(
Conv5×5

([
hk, Ik

]
,Wr

))
, (9)

ĥ
k+1

= tanh
(
Conv5×5

([
rk+1 ⊙ hk, Ik

]
,Wh

))
, (10)

hk+1 =
(
1− zk+1

)
⊙ hk + zk+1 ⊙ ĥ

k+1
, (11)

where k is the stage index, z is the update gate, r is the reset gate, Conv5×5 is the separable 5× 5
convolution, ⊙ is the element-wise multiplication, Wz , Wr and Wh stand for learnable parameters.
The hidden state h is initialized by the H

4 × W
4 resolution output in the decoder. The probabilistic

distribution is finally predicted from the updated hidden state with two 3× 3 convolutional layers.
Meanwhile, the feature maps are regularized by ReLU and Softmax activations, respectively. A
linear combination of probabilistic distribution and depth candidates is applied to obtain the depth
prediction, which is further upsampled to the original resolution by the bilinear interpolation.

Equipped with this optimizer, initiating at a coarse prediction, the predicted depth is iteratively refined
and eventually converges to the final result.

3.4 Training Loss Function

Pixel-wise depth loss. Following [5, 3], we leverage a scaled Scale-Invariant loss for depth supervi-
sion [4],

Lpixel =

K∑
k=1

α

√√√√ 1
|T|
∑
p
(g (p))2 − β

|T|2

(∑
p

g (p)

)2

, (12)

where g (p) = log D̂ (p)− logDgt (p), K is the maximum number of stages and is set to 6, T stands
for the set of pixels having valid ground-truth values, α and β are set to 10 and 0.85 based on [4].

4 Experiment

We evaluate the proposed method on both outdoor and indoor datasets, which include KITTI [18],
NYU-Depth-v2 [19] and SUN RGB-D [20]. In the following, we start by introducing the relevant
datasets, evaluation metrics and implementation details. Then, we present quantitative and quali-
tative comparisons to prior state-of-the-art competitors, generalization and ablation studies, model
parameters and inference time comparison.
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Method Backbone Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
DORN [2] ResNet-101 0.072 0.307 2.727 0.120 0.932 0.984 0.994
VNL [38] ResNeXt-101 0.072 - 3.258 0.117 0.938 0.990 0.998
BTS [4] DenseNet-161 0.060 0.249 2.798 0.096 0.955 0.993 0.998

PWA [39] ResNeXt-101 0.060 0.221 2.604 0.093 0.958 0.994 0.999
TransDepth [10] R-50+ViT-B/16† 0.064 0.252 2.755 0.098 0.956 0.994 0.999

AdaBins [3] E-B5+mini-ViT 0.058 0.190 2.360 0.088 0.964 0.995 0.999
P3Depth [40] ResNet-101 0.071 0.270 2.842 0.103 0.953 0.993 0.998
NeWCRFs [5] Swin-Large† 0.052 0.155 2.129 0.079 0.974 0.997 0.999
BinsFormer [8] Swin-Tiny 0.058 0.183 2.286 0.088 0.968 0.995 0.999
BinsFormer [8] Swin-Large† 0.052 0.151 2.098 0.079 0.974 0.997 0.999

PixelFormer [16] Swin-Large† 0.051 0.149 2.081 0.077 0.976 0.997 0.999
Ours Swin-Tiny 0.056 0.169 2.205 0.084 0.970 0.996 0.999
Ours Swin-Large† 0.050 0.142 2.011 0.075 0.978 0.998 0.999

Table 1: Quantitative depth comparison on the Eigen split of KITTI dataset. We provide results
of the proposed method based on Swin-Large and Swin-Tiny backbones [29]. The maximum depth is
capped at 80m. R-50 and E-B5 are the abbreviations of ResNet-50 [25] and EfficientNet-B5 [41],
respectively. † indicates that the models are pre-trained by ImageNet-22K. ‘-’ means not applicable.
The best results are marked in bold.

Method dataset SILog ↓ Abs Rel Sq Rel ↓ iRMSE ↓ RMSE ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
DORN [2] validation 12.22 11.78 3.03 11.68 3.80 0.913 0.985 0.995
BTS [4] validation 10.67 7.51 1.59 8.10 3.37 0.938 0.987 0.996

BA-Full [42] validation 10.64 8.25 1.81 8.47 3.30 0.938 0.988 0.997
NeWCRFs [5] validation 8.31 5.54 0.89 6.34 2.55 0.968 0.995 0.998

Ours validation 7.58 5.10 0.75 5.90 2.37 0.974 0.996 0.999

DORN [2] online test 11.77 8.78 2.23 12.98 - - - -
BTS [4] online test 11.67 9.04 2.21 12.23 - - - -

BA-Full [42] online test 11.61 9.38 2.29 12.23 - - - -
PWA [39] online test 11.45 9.05 2.30 12.32 - - - -

Vip-Deeplab [43] online test 10.80 8.94 2.19 11.77 - - - -
NeWCRFs [5] online test 10.39 8.37 1.83 11.03 - - - -

PixelFormer [16] online test 10.28 8.16 1.82 10.84 - - - -
BinsFormer [8] online test 10.14 8.23 1.69 10.90 - - - -

Ours online test 9.63 7.82 1.60 10.68 - - - -

Table 2: Quantitative depth comparison on the official split of KITTI dataset. The SILog is the
main ranking metric.

4.1 Datasets and Evaluation Metrics

KITTI is an outdoor dataset captured by equipment mounted on a moving vehicle, providing stereo
images and corresponding 3D laser scans. The images are around 376× 1241 resolution. Here we
adopt two data splits, Eigen training/testing split [1] and official benchmark split [44]. The former
uses 23488 left view images for training and 697 images for testing. The latter consists of 85898
training images, 1000 validation images and 500 test images without the depth ground-truth. The
evaluation results on the official benchmark split are generated by the online server.

NYU-Depth-v2 is an indoor dataset that has RGB images and ground-truth depth maps at a 480×640
resolution. We evaluate the proposed method on the official data split, which involves 36253 images
for training and 654 images for testing.

SUN RGB-D is collected from indoor scenes with high diversity using four sensors, containing
roughly 10K images. The dataset is only used for zero-shot generalization study and the official 5050
test images are adopted.

Evaluation metrics. Similar to previous work [5], we leverage the standard evaluation protocol to
validate the efficacy of the proposed method in experiments, i.e., relative absolute error (Abs Rel),
relative squared error (Sq Rel), root mean squared error (RMSE), root mean squared logarithmic
error (RMSE log), inverse root mean squared error (iRMSE), log10 error (log10), threshold accuracy
(δ < 1.25, δ < 1.252 and δ < 1.253) and square root of the scale invariant logarithmic error (SILog).
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Method Backbone Abs Rel ↓ Sq Rel ↓ RMSE ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
DORN [2] ResNet-101 0.115 - 0.509 0.051 0.828 0.965 0.992
VNL [38] ResNeXt-101 0.108 - 0.416 0.048 0.875 0.976 0.994
BTS [4] DenseNet-161 0.110 0.066 0.392 0.047 0.885 0.978 0.994

PWA [39] DenseNet-161 0.105 - 0.374 0.045 0.892 0.985 0.997
Long et al. [11] HRNet-48 0.101 - 0.377 0.044 0.890 0.982 0.996
TransDepth [10] R-50+ViT-B/16† 0.106 - 0.365 0.045 0.900 0.983 0.996

AdaBins [3] E-B5+mini-ViT 0.103 - 0.364 0.044 0.903 0.984 0.997
P3Depth [40] ResNet-101 0.104 - 0.356 0.043 0.898 0.981 0.996

LocalBins [15] E-B5 0.099 - 0.357 0.042 0.907 0.987 0.998
NeWCRFs [5] Swin-Large† 0.095 0.045 0.334 0.041 0.922 0.992 0.998

BinsFormer‡ [8] Swin-Tiny 0.113 - 0.379 0.047 0.890 0.983 0.996
BinsFormer‡ [8] Swin-Large† 0.094 - 0.330 0.040 0.925 0.989 0.997
PixelFormer [16] Swin-Large† 0.090 - 0.322 0.039 0.929 0.991 0.998

Ours Swin-Tiny 0.108 0.061 0.375 0.046 0.893 0.984 0.996
Ours Swin-Large† 0.087 0.040 0.314 0.038 0.936 0.992 0.998

Table 3: Quantitative depth comparison on the NYU-Depth-v2 dataset. The maximum depth is
capped at 10m. ‡ stands for that the model is trained using auxiliary scene class information.

Method Backbone Abs Rel ↓ RMSE ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Chen et al. [45] SENet 0.166 0.494 0.071 0.757 0.943 0.984

VNL [38] ResNeXt-101 0.183 0.541 0.082 0.696 0.912 0.973
BTS [4] DenseNet-161 0.172 0.515 0.075 0.740 0.933 0.980

AdaBins [3] E-B5+Mini-ViT 0.159 0.476 0.068 0.771 0.944 0.983
LocalBins [15] E-B5 0.156 0.470 0.067 0.777 0.949 0.985

PixelFormer [16] Swin-Large† 0.144 0.441 0.062 0.802 0.962 0.990
BinsFormer‡ [8] Swin-Tiny 0.162 0.478 0.069 0.760 0.945 0.985
BinsFormer‡ [8] Swin-Large† 0.143 0.421 0.061 0.805 0.963 0.990

Ours Swin-Tiny 0.157 0.476 0.069 0.768 0.950 0.987
Ours Swin-Large† 0.135 0.405 0.059 0.822 0.971 0.993

Table 4: Generalization to the SUN RGB-D dataset in a zero-shot setting with models trained
on the NYU-Depth-v2 dataset.

4.2 Implementation Details

Our framework is implemented in the PyTorch library [46] and trained on 4 NVIDIA A5000 24GB
GPUs. The training process runs a total number of 20 epochs and takes around 24 hours. We utilize
the Adam optimizer [47] and a batch size of 8. The learning rate is gradually reduced from 2e-5 to
2e-6 via the polynomial decay strategy.

4.3 Comparison to previous state-of-the-art competitors

KITTI. We report results on the Eigen split and official benchmark split, as summarized in Tables 1
and 2, respectively. For the Eigen split, the proposed method exceeds the leading approaches by a
large margin, e.g., compared to PixelFormer, which is also based on the classification-regression. In
terms of the official benchmark split, the results are generated by the online server and the proposed
method outperforms previous approaches again. It is worth noting that the main ranking metric SILog
is reduced considerably.

In Fig. 4, we present qualitative depth comparison on the KITTI dataset. As we can see, the proposed
method is capable of correctly predicting the depth of foreground objects, such as poles, even when
the background is very complex, e.g., lush foliage and bushes. In such complex scenes, PixelFormer
and NeWCRFs are prone to foreground and background depth aliasing. Moreover, we notice that the
compared methods, especially PixelFormer, tend to have mosaic-like artifacts at the top of the depth
maps, but the proposed method does not.

NYU-Depth-v2. To further present the superiority of the proposed method in the indoor scenario,
we evaluate it on the NYU-Depth-v2 dataset. The results are reported in Table 3, indicating that the
proposed method surpasses prior competing approaches and achieves consistent improvements on
most metrics. In particular, it improves BinsFormer by 7.4% and 4.8% on the Abs Rel and RMSE,
respectively, which emphasizes the efficacy of our IEBins. In Fig. 5, we demonstrate qualitative depth
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Input PixelFormer NeWCRFs Ours

Figure 4: Qualitative depth comparison on the KITTI dataset. The red boxes show the regions to
focus on.

Input GT BTS OursAdaBins PixelFormer NeWCRFs

Figure 5: Qualitative depth comparison on the NYU-Depth-v2 dataset. The white boxes indicate
the regions to focus on.

comparison. As can be seen, the proposed method preserves fine-grained details, such as boundaries
and generates more continuous depth values in planar regions.

4.4 Zero-shot Generalization

Similar to previous approaches [3, 8], we conduct a cross-dataset evaluation in a zero-shot setting
where the models are trained on the NYU-Depth-v2 dataset but evaluated on the SUN RGB-D dataset.
As shown in Table 4, the proposed method achieves superior results than the compared approaches.
Besides, we notice that the proposed method with Swin-Tiny backbone performs slightly worse than
AdaBins on the NYU-Depth-v2 dataset, but on the SUN RGB-D it even surpasses AdaBins on some
metrics like Abs Rel, which is an indicator of its excellent generalization ability.

4.5 Ablation Study

To better indicate the influence of each individual component, we conduct several ablation studies,
divided into IEBins, bin types and effect of bin numbers.

IEBins. The importance of IEBins is first evaluated by comparing it with standard regression and
IBins. We construct a baseline by removing the iterative optimizer from the whole framework. The
standard regression is achieved by using the baseline to directly predict the depth map. The IBins
represents that we replace the elastic target bin with the original target bin at each stage. Table 5
shows that the standard regression performs worse than IBins and IEBins. Benefiting from the elastic
target bin, the more robust IEBins takes the IBins a step further.

Bin types. We then compare the IEBins against other choices including uniform bins [2], space
increasing bins [2], adaptive bins [3] and local bins [15]. To make a fair comparison, we remain all
other configurations the same except for bin types. As listed in Table 5, the baseline equipped with
IEBins improves the performance markedly and surpasses other variants.
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Method Abs Rel ↓ RMSE ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Baseline + Regression 0.095 0.337 0.041 0.921 0.991 0.998
Baseline + UBins [2] 0.091 0.328 0.040 0.925 0.991 0.998
Baseline + SIBins [2] 0.090 0.326 0.039 0.928 0.992 0.998

Baseline + AdaBins [3] 0.089 0.320 0.038 0.931 0.991 0.998
Baseline + LocalBins [15] 0.090 0.319 0.038 0.932 0.992 0.998

Baseline + IBins 0.090 0.317 0.038 0.932 0.991 0.998
Baseline + IEBins 0.087 0.314 0.038 0.936 0.992 0.998

Table 5: Comparison of different bin types on the NYU-Depth-v2 dataset. The baseline is built
by removing the iterative optimizer from our whole framework. UBins: uniform bins; SIBins: space
increasing bins; AdaBins: adaptive bins; LocalBins: local bins; IBins: iterative bins, which stands
for replacing the elastic target bin with the original target bin at each stage. The number of bins for
UBins, SIBins, AdaBins and LocalBins is set to 256 following [2, 3, 15].

Number of Bins Abs Rel ↓ RMSE ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
4 0.105 0.335 0.043 0.900 0.982 0.999
8 0.089 0.317 0.038 0.934 0.992 0.998

16 0.087 0.314 0.038 0.936 0.992 0.998
32 0.088 0.317 0.038 0.932 0.992 0.998

Table 6: Effect of bin numbers on the NYU-Depth-v2 dataset.

Method Backbone Abs Rel ↓ Parameters (M) ↓ Inference Time (s) ↓
NeWCRFs [5] Swin-Large† 0.095 270 0.052

BinsFormer‡ [8] Swin-Large† 0.094 255 0.216
Ours Swin-Large† 0.087 273 0.085

Table 7: Comparison of model parameters and inference time on the NYU-Depth-v2 dataset.

Effect of bin numbers. To examine how the number of bins affects the performance, we train our
model using different values of the bin number. The results are reported in Table 6. The error drops
sharply as the number of bins increases, and then this drop disappears when it is greater than 16 bins.
Therefore, we use 16 bins in our final model.

4.6 Model Parameters and Inference Time

We conduct a comparison between the proposed method, NeWCRFs and BinsFormer based on their
inference time and the number of model parameters in Table 7, with the Swin-Large backbone. We
measure the inference time on the NYU-Depth-v2 test set with a batch size of 1. It can be seen that the
number of parameters of the proposed method is almost equal to that of NeWCRFs and slightly more
than that of BinsFormer. Nevertheless, the proposed method is nearly 60% faster than BinsFormer in
inference time, also as the classification-regression-based method. Meanwhile, the proposed method
achieves much better performance than these two counterparts. Hence, the proposed method provides
a better balance between performance, number of parameters and inference time.

5 Limitations

We acknowledge the following limitations: First, we use the classification-regression to predict depth.
Compared with the classification, the depth acquired by classification-regression is smoother and
more continuous, but at the same time it may blur the boundaries due to the weighted average of all
depth candidates. Second, we use the pixel-wise loss to supervise depth without imposing a direct
supervision signal on the probabilistic distribution. This does not guarantee that the depth candidate
corresponding to the peak point of the probability distribution is the real optimal depth candidate,
thereby affecting the depth estimate.
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6 Conclusion

In this paper, we introduce a novel concept of iterative elastic bins for the classification-regression-
based monocular depth estimation. The proposed iterative elastic bins uses multiple small number of
bins to progressively search for high-quality depth and can be plugged into other frameworks as a
strong baseline. In addition, we present a dedicated framework composed of a feature extractor and
an iterative optimizer. The performance is evaluated on two popular datasets from both outdoor and
indoor scenarios and the proposed method exceeds previous state-of-the-art competitors. Furthermore,
its generalization ability is verified in a zero-shot setting on the SUN RGB-D dataset.
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7 Supplementary

7.1 More Ablation Results

To better understand the influence of each individual component on the KITTI dataset, we provide
results in Tables 8 and 9. As we can see from Table 8, the proposed IEBins exceeds other counterparts
again. Table 9 shows a similar performance trend as in NYU-Depth-v2 dataset with increasing number
of bins. Besides, we provide results of different training stage numbers on the NYU-Depth-v2 dataset
in Table 10. As the stage increases, the performance gradually improves until saturated, and when the
number of stages exceeds 6, the performance changes very little.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Baseline + Regression 0.053 0.153 2.129 0.080 0.974 0.997 0.999
Baseline + UBins [2] 0.052 0.151 2.095 0.078 0.975 0.997 0.999
Baseline + SIBins [2] 0.051 0.147 2.092 0.078 0.976 0.997 0.999

Baseline + AdaBins [3] 0.051 0.146 2.048 0.077 0.976 0.998 0.999
Baseline + IBins 0.050 0.143 2.050 0.076 0.977 0.998 0.999

Baseline + IEBins 0.050 0.142 2.011 0.075 0.978 0.998 0.999

Table 8: Comparison of different bin types on the KITTI dataset.

Number of Bins Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
4 0.288 1.199 4.146 0.277 0.574 0.910 0.979
8 0.054 0.147 2.009 0.080 0.973 0.996 0.999

16 0.050 0.142 2.011 0.075 0.978 0.998 0.999
32 0.050 0.142 2.026 0.076 0.977 0.998 0.999

Table 9: Effect of bin numbers on the KITTI dataset.

Number of Stages Abs Rel ↓ RMSE ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
1 0.093 0.333 0.041 0.921 0.991 0.998
2 0.090 0.325 0.040 0.927 0.991 0.998
3 0.089 0.320 0.039 0.931 0.991 0.998
4 0.088 0.317 0.038 0.933 0.992 0.998
5 0.087 0.315 0.038 0.935 0.992 0.998
6 0.087 0.314 0.038 0.936 0.992 0.998
7 0.087 0.313 0.038 0.935 0.992 0.998

Table 10: Effect of training stage numbers on the NYU-Depth-v2 dataset.
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7.2 More Qualitative Results

We present qualitative depth comparison on the official split of KITTI dataset in Fig. 6. It can be seen
that the proposed method is more capable of delineating difficult object boundaries, e.g., human. To
further evaluate the depth quality from the 3D shape, we convert the depth maps into point clouds
and present qualitative point cloud comparison on the KITTI and NYU-Depth-v2 datasets in Figs. 7
and 8, respectively. As can be seen, the proposed method shows less distortion than the compared
approaches and recovers the structures of the 3D world reasonably.

7.3 Application to SLAM

To exhibit the benefits of improvements in downstream tasks such as SLAM, we integrate IEBins
and NeWCRFs [5] into ORB-SLAM2 [48] in the RGB-D setting and evaluate the visual odometry
performance on the KITTI odometry dataset. We report results on keyframes (selected by the ORB-
SLAM2) and on all frames of sequences 01-10. The ATE (m) metric is used. As shown in Table 11,
the proposed method either significantly exceeds the NeWCRFs or achieves on par performance with
the latter.

Sequence IEBins (key) NeWCRFs (key) IEBins (all) NeWCRFs (all)

01 117.06 536.53 125.09 583.20
02 12.22 13.32 13.59 13.97
03 6.72 8.31 7.15 9.04
04 16.70 31.56 16.61 30.59
05 8.10 8.05 7.56 7.86
06 1.32 0.96 1.35 0.95
07 2.48 3.09 2.55 3.24
08 10.89 9.82 11.06 9.90
09 5.44 7.61 5.68 7.67
10 7.21 11.73 8.24 12.66

Table 11: Visual odometry results on the KITTI odometry dataset. “key” and “all” stand for
keyframes and all frames, respectively.

7.4 Quantitative Evidence Towards the Working of IEBins

We randomly choose a sample from the NYU-Depth-v2 test set, and show the median elastic target
bin width across the image, corresponding uncertainty values and elasticity factors (new adjusted
width divided by the bin-width at that stage with no elasticity) for each stage. The results are listed
in Table 12. It can be seen that as the stage increases, the elastic target bin widths and uncertainty
values continue to decrease. The elasticity factors are between 3.9 and 4.8.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Width (median) 9.9 2.561 0.756 0.228 0.073 0.024
Uncertainty (std) - 0.971 0.281 0.087 0.029 0.010
Elasticity factor - 4.139 3.917 4.222 4.562 4.800

Table 12: Median elastic target bin width across the image, corresponding uncertainty values
and elasticity factors for different stages.
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Figure 6: Qualitative depth comparison on the KITTI online benchmark. The results are
generated by the online server. The second and third rows stand for depth predictions and the fourth
and fifth rows stand for corresponding error maps, where the large errors are in orange or red. The
orange boxes indicate the regions to emphasize.
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Figure 7: Qualitative point cloud comparison on the KITTI dataset.
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Figure 8: Qualitative point cloud comparison on the NYU-Depth-v2 dataset.
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