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Abstract

Temporal sentence grounding (TSG) aims to locate a
specific moment from an untrimmed video with a given nat-
ural language query. Recently, weakly supervised methods
still have a large performance gap compared to fully super-
vised ones, while the latter requires laborious timestamp
annotations. In this study, we aim to reduce the annotation
cost yet keep competitive performance for TSG task com-
pared to fully supervised ones. To achieve this goal, we
investigate a recently proposed glance-supervised temporal
sentence grounding task, which requires only single frame
annotation (referred to as glance annotation) for each
query. Under this setup, we propose a Dynamic Gaussian
prior based Grounding framework with Glance annotation
(D3G), which consists of a Semantic Alignment Group Con-
trastive Learning module (SA-GCL) and a Dynamic Gaus-
sian prior Adjustment module (DGA). Specifically, SA-GCL
samples reliable positive moments from a 2D temporal map
via jointly leveraging Gaussian prior and semantic consis-
tency, which contributes to aligning the positive sentence-
moment pairs in the joint embedding space. Moreover, to al-
leviate the annotation bias resulting from glance annotation
and model complex queries consisting of multiple events,
we propose the DGA module, which adjusts the distribu-
tion dynamically to approximate the ground truth of tar-
get moments. Extensive experiments on three challenging
benchmarks verify the effectiveness of the proposed D3G.
It outperforms the state-of-the-art weakly supervised meth-
ods by a large margin and narrows the performance gap
compared to fully supervised methods. Code is available at
https://github.com/solicucu/D3G.

1. Introduction

Temporal sentence grounding is a fundamental prob-
lem in computer vision and receives an increasing atten-
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Figure 1. [lustration of glance annotation g (red dashed line) and
simple comparison between ViGA and D3G. The red rectangle
indicates the boundary of target moment.

tion in recent years. Given the query sentence and an
untrimmed video, the goal of TSG is to localize the start and
end timestamps of specific moment that semantically corre-
sponds to the query. In recent years, full supervised tem-
poral sentence grounding (FS-TSG) has achieved tremen-
dous achievements [9, 1, 41, 43, 34, 29, 33, 42]. However,
obtaining accurate timestamps for each sentence is labor-
intensive and subjective, which prevents it from scaling to
large-scale video-sentence pairs and practical applications.

Weakly supervised temporal sentence grounding (WS-
TSG), which requires only the video and query pairs, re-
ceives an increasing attention recently. Although great ad-
vances [19, 32, 12, 45, 43, 44] have been achieved in recent
years, there still remains a huge performance gap between
WS-TSG and FS-TSG. WS-TSG suffers from severe local-
ization issues due to the large discrepancy between video-
level annotations and clip-level task.

Recently, Cui et al. [6] propose a new annotating
paradigm called glance annotation for TSG, requiring the
timestamp of only random single frame within the tempo-
ral boundary of the target moment. It is noted that such
annotation only increases trivial annotating cost compared
to WS-TSG. Figure 1 illustrates the details of glance an-
notation. With glance annotation, Cui et al. propose the
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ViGA based on contrastive learning. ViGA first cuts the in-
put video into clips of fixed length, which are assigned with
Gaussian weights generated according to the glance anno-
tation, and contrasts clips with queries. There are two ob-
vious disadvantages in this way. First, moments of interest
usually have various durations. Therefore, these clips can-
not cover a wide range of target moments, which inevitably
aligns the sentence with incomplete moment and obtains
sub-optimal performance. Second, ViGA utilizes a fixed
scale Gaussian distribution centered at the glance frame to
describe the span of each annotated moment. However, the
glance annotations are not guaranteed at the center of target
moments, which results in annotation bias as shown in Fig-
ure 2. Besides, since some complex query sentences consist
of multiple events, a single Gaussian distribution is hard to
cover all events at the same time as shown in Figure 3. To
address the aforementioned defects and fully unleash the
potential of Gaussian prior knowledge with the low-cost
glance annotation, we propose a Dynamic Gaussian prior
based Grounding framework with Glance annotation (D3G)
as shown in Figure 4.

We first generate a wide range of candidate moments fol-
lowing 2D-TAN [43]. Afterwards, we propose a Semantic
Alignment Group Contrastive Learning module (SA-GCL)
to align the positive sentence-moment pairs in the joint em-
bedding space. Specifically, for each query sentence, we
sample a group of positive moments according to calibrated
Gausssian prior and minimize the distances between these
moments and the query sentence. In this way, it tends to
gradually mine the moments which have increasing over-
lap with the ground truth. Moreover, we propose a Dy-
namic Gaussian prior Adjustment module (DGA), which
further alleviates annotation bias and approximates the span
of complex moments consisting of multiple events. Specif-
ically, we adopt multiple Gaussian distributions to describe
the weight distributions of moments. Therefore, the weight
distributions for various moments can be flexibly adjusted
and gradually approach to the ground truth. Our contribu-
tions are summarized as follows:

* We propose a Dynamic Gaussian prior based Ground-
ing framework with Glance annotation (D3G), which
facilitates the development of temporal sentence
grounding with lower annotated cost.

* We propose a Semantic Alignment Group Contrastive
Learning module to align the features of the positive
sentence-moment pairs and a Dynamic Gaussian prior
Adjustment module to ease the annotation bias and
model the distributions of complex moments.

» Extensive experiments demonstrate that D3G obtains
consistent and significant gains compared to method
under the same annotating paradigm and outperforms
weakly supervised methods by a large margin.
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Figure 2. Illustration of annotation bias and Gaussian prior after
dynamic adjustment. Top: the target moment is assigned with a
low weight w,, due to the bias of glance annotation according to
ViGA, which we call annotation bias. Bottom: a reasonable Gaus-
sian distribution is obtained via DGA described in Section 3.3.

2. Related Work

Full Supervised Temporal Sentence Grounding. The FS-
TSG methods can be categorized into two groups. Two-
stage methods [I, 9, 11, 13, 14, 35] first propose candi-
date segments in a video through sliding window or pro-
posal generation. A cross-modal matching network is then
employed to find the best matching clip. However, these
propose-and-match paradigms are time-consuming due to
the numerous candidates. To reduce the redundant com-
putation, some researchers proposed single-stage meth-
ods [2, 3, 40, 41, 30, 20, 43, 21, 39, 37]. 2D-TAN [43]
constructs 2D feature map to model the temporal relations
of video segment. Recently, Wang et al. [33] propose a Mu-
tual Matching Network based on 2D-TAN, and further im-
prove the performance via exploiting both intra- and inter-
video negative samples. Although fully supervised meth-
ods achieve satisfying performance, they are highly depen-
dent on accurate timestamp annotations. It is highly time-
consuming and laborious to obtain these annotations for
large-scale video-sentence pairs.

Weakly Supervised Temporal Sentence Grounding.
Specifically, WS-TSG methods can be grouped into
reconstruction-based methods [8, 18, 26, 4] and multi-
instance learning (MIL) methods [19, 10, 5, 38, 12, 27].
SCN [18] employs a semantic completion network to re-
cover the masked words in the query sentence with the gen-
erated proposals, which provides feedback for facilitating
final predictions. To further exploit the negative samples in
MIL-based methods, CNM [44] and CPL [45] propose to
generate proposals with Gaussian functions and introduce
intra-video contrastive learning. WS-TSG methods indeed
advance with low annotation cost, however, there still re-
mains a large performance gap compared to FS-TSG meth-
ods due to the discrepancy between video-level annotations
and clip-level task.

Glance Supervised Temporal Sentence Grounding. Re-



A person walks on the roof of a climbing equipment

then he goes down the wall

and reach the floor and walk forward.

Figure 3. Illustration of complex query consists of multiple events.
Note that g indicates the position of glance annotation. The ac-
cording Gaussian distribution (red curves) is hard to cover the
whole target moments. We utilize DGA module to mine multiple
latent Gaussian distributions (dashed line) to model such query.

cently, ViGA [0] proposes glance supervised TSG (GS-
TSG) task with a new annotating paradigm. ViGA uti-
lizes a Gaussian function to model the relevance of differ-
ent clips with target moment and contrasts the clips with the
queries. Though ViGA achieves promising performance, it
still suffers from two limitations as mentioned in Introduc-
tion. Concurrently, Xu et al. [36] propose the similar task
called PS-VTG, and generate pseudo segment-level labels
based on language activation sequences. To better explore
the Gaussian prior for TSG task with glance annotation, we
propose a simple yet effective D3G, which achieves com-
petitive performance compared with both WS-TSG and FS-
TSG methods. Concurrent with our work, Ju et al. [15]
propose a robust partial-full union framework (PFU) and
achieve excellent performance with glance annotation or
short-clip labels.

3. Proposed Method
3.1. Overview

Given an untrimmed video V' and query sentence .S, the
temporal sentence grounding task aims to determine the
start timestamp ¢, and end timestamp t., where the mo-
ment V;_.;, best semantically corresponds to the query. As
for FS-TSG, the exact timestamps (¢s,t.) of corresponding
moment is provided given a query description. In contrast,
Cui et al. [6] propose a new low-cost annotating paradigm
called glance annotation, which requires only single times-
tamp g, satisfying g € [ts, t.]. Following the setting of [6],
we propose a Dynamic Gaussian prior based Grounding
framework with Glance annotation (D3G) to fully unleash
the potential of glance annotations.

Our D3G adopts the network architecture similar to
[43, 33]. Given an untrimmed video, we firstly encode
the video into feature vectors with pre-trained 2D or 3D
convolutional network [25, 28] and segment the video fea-
tures into N video clips. Specifically, we apply average

pooling to each clip to obtain clip-level features V' =
{fo, 2, f5} € RNVXDv. These clip features are then
passed through an FC layer to reduce their dimension, de-
noted as F19 € RNV*dv  Afterwards, we encode them as
2D temporal feature map F' € RN*N*dv following 2D-
TAN [43] with the max pooling. As for language encoder,
we choose DistilBERT [23] to obtain sentence-level feature
f* € R% following [33]. Finally, to estimate the matching
scores of candidate moments and the query, we utilize a lin-
ear projection layer to project the textual and visual features
into same dimension d, respectively. The final representa-
tion of sentence is f* € R? and the features of all moments
are ' € RVXNxd_ The final matching scores are given by
the cosine similarity between f° and elements of F'.

3.2. Semantic Alignment Group Contrastive Learn-
ing

In this section, we aim to mine the moment which most
semantically corresponds to the query and maximize the
similarity between them. To achieve this goal, we have
two crucial steps. First, we generate abundant candidate
moments following 2D-TAN and assign them with reli-
able Gaussian prior weights generated with the guidance of
glance annotation. Second, we propose a semantic align-
ment group contrastive learning to align a group of positive
moments with corresponding query sentence.

To be specific, given the encoded video features F1?¢ €
RN*dv and glance annotation ¢, we also utilize a Gaussian
function parameterized with (i, o) to model the relations
between frames and target moment, where the p is deter-
mined by the glance g. We first scale the sequence indices
I € {1,2,...,N} into domain [—1, 1] by a linear transfor-
mation as follows:

1—1

hi) = 21— —

1. (1

Given the index ¢, we can obtain corresponding Gaussian
weight via Eq. (2).

1 (h(i) = h(w))*
N exp(— 572

where p € I and o is a hyperparameter, and Norm(-) is a
function used to scale values into range [0, 1].

Different from ViGA [6], we utilize the characteristic
of 2D-TAN to generate a wide range of candidate mo-
ments with various durations. Given the video features
Fld ¢ RNXdv we encode them into 2D feature map
F € RN*Nxd a5 shown in Figure 4, where F}; denotes
the feature of moment that starts at position ¢ and ends at
position j. Note that the moment is valid only when 7 < j.
We then propose a triplet-sample strategy to generate more
reasonable weights for candidate moments instead of only
sampling the weight at middle point as in [6]. Specifically,

G(i,p,0) = Norm( ), )



fseRd

! Query person pours

some water into a glass. 1 DistllBERT proj ?

Fld RNXd,,

feature

Video

max pooling
& conv & proj

-t

L

F E RNXNXd

intra-video positive
intra-video negative
inter-video negative

text feature

Figure 4. The overview of proposed D3G, which consists of Semantic Alignment Group Contrastive Learning (SA-GCL) and Dynamic
Gaussain prior Adjustment (DGA). Note that g indicates the position of glance annotation and the grids with dashed line in F" are invalid

candidate moments.
same/different videos.

“proj” denotes the linear projection layer.

for each moment with start position ¢ and end position j, we
compute its Gaussian prior weight as follows:

2 (Cli,0,0)+C(9,0)+C( 22 ] 6,0)), @)

where g is glance annotation for current target moment. In
this way, those moments containing target moment but hav-
ing longer durations will be penalized with lower weights.

To remedy the annotation bias, we additionally intro-
duce semantic consistency prior to calibrate the Gaussian
prior weight w;; for each candidate moment. Given the
query features f* € R and the features F' € RV*Nxd of
candidate moments, we compute their semantic consistency
scores via Eq. (4).

wij =

o I Fy
Tl E T

where || - || is lr-norm. Afterwards, we rectify the Gaussian
weight w;; with semantic consistency score s;; via multi-
plication to obtain new prior weight p;; = w;;- 8;;.

The objective of Temporal Sentence Grounding is to
learn a cross-modal embedding space, where the query sen-
tence feature should be well aligned with the feature of
corresponding moment and far way from those of irrele-
vant video moments. Motivated by [31, 17], we propose

“4)

“intra/inter” indicate the positive or negative moments sampled from

a Semantic Alignment Group Contrastive Learning module
(SA-GCL) to gradually mine candidate moments most se-
mantically aligned with given query sentence. To be spe-
cific, we first sample top-k candidate moments from F' as
positive keys for query f° according to the new prior p;;,
denoted as F? = {F;;|1<i<j <N} € RF*4_ Simulta-
neously, we sample Gaussian weights of corresponding mo-
ments denoted as WP = {w;;|1 <i < j < N} € RF. We
then gather other candidate moments which do not contain
the glance g from intra-video and all candidate moments
from other videos within same batch as negative keys, de-
noted as F" = {Fj;|1 <i < j < N} € RV»*4 where N,
denotes the number of negative moments. The objective of
SA-GCL can be described as follows:

k
1 exp(f*-FP/7
—EZWflog—( /7)

Latign = 3
o i SUM
. N, ®)
SUM:ZBZE S'Ff/r)+Zexp(fs~Ff/T),
z2=0 z=0

where 7 is the temperature scaling factor. SA-GCL aims to
maximize the similarity between the query f° and a group
of corresponding positive moments 7 under the joint em-
bedding space while pushing away negative pairs. Note that



different positive moments are assigned with corresponding
prior weight W2, In this way, SA-GCL effectively avoids
being dominated by inaccurate moments with less similar-
ity and tends to mine the candidate moments having large
overlap with the target moment.

3.3. Dynamic Gaussian prior Adjustment

To further ease the annotation bias and characterize com-
plex target moments, we propose a novel Dynamic Gaus-
sian prior Adjustment module (DGA). Specifically, we uti-
lize multiple Gaussian functions with different centers to
model the local distributions of target moment and aggre-
gate them to approximate the distribution of target moment.

Given the video features F''¢ ¢ RV*?> and annotation
glance g, we compute the relevance of other position ¢ with
position g via Eq. (6).

Fgld . Fild (6)
Tgi = ——————.
TN EE
Tgi = (1 = a)Tgi + arg;. )

To make the relevance scores more stable, we update
Tg; with momentum factor « as shown in Eq. (7), where
Tg4i = 1g; at first training epoch. According to the relevance
{74:}, we can mine latent local centers for target moment.
Specifically, we utilize a specific threshold 7;. to filter the
candidate positions and obtain a mask M, € {0,1}" for
glance g as follows:

i 1a fo i 2 T’r'
M, = {0’ ! ®)

otherwise

With the mask of latent local centers, we then adjust the
Gaussian prior dynamically via Eq. (9).

ZMZ

where C is the summation of mask M. Afterwards, we
replace the G(i,g,0) in Eq. (3) with G‘(i,g, o), and nat-
urally obtain dynamic Gaussian prior weight during train-
ing. Compared to ViGA, our dynamic Gaussian prior is
more flexible and able to adjust the center of Gaussian dis-
tribution adaptively. Therefore, DGA further alleviates the
annotation bias and provides more reliable prior weights.
Besides, multiple Gaussian distributions are well suited for
modeling complex target moments consisting of multiple
events as shown in Figure 3. DGA tends to widen the re-
gion of high Gaussian weight via self-mining neighboring
frames based on the feature of glance g and gradually gen-
erates the Gaussian prior weight well aligned with target
moment. In this way, SA-GCL will be provided with pos-
itive moments of high quality, which eventually promotes

ng, G(i,z,0), )

the cross-modal semantic alignment learning and accurate
localization of target moments.

Discussion. To clearly distinguish the differences between
D3G and few similar works, we give some explanations
here. As for MMN, D3G shares the same process of gener-
ating candidate moments following 2D-TAN, which is not
the key contribution of our method. MMN utilizes nor-
mal one-to-one contrastive learning is no longer suitable
to glance annotation. However, D3G instead adopts a suit-
able sample strategy and corresponding adapted group con-
trastive learning, which is key component to unleash the po-
tential of glance annotations. As for CPL, we also know that
it utilizes multiple Gaussian distribution to describe positive
moments. However, it actually select one most matched
positive moment guided by the loss of masked language
reconstruction for contrastive learning, while D3G utilizes
multiple Gaussian functions to adaptively model complex
queries consisting of multiple events and samples a group
of positive moments for contrastive learning.

4. Experiments

In order to validate the effectiveness of the proposed
D3G, we conduct extensive experiments on three publicly
available datasets: Charades-STA [9], TACoS [9] and Ac-
tivityNet Captions [16].

4.1. Datasets

Charades-STA is built on dataset Charades [24] for tem-
poral sentence grounding. It contains 12,408 and 3,720
moment-sentence pairs for training and testing.
TACoS consists of 127 videos selected from the MPII
Cooking Composite Activities video corpus [22]. We fol-
low the standard split from [9], which contains 10,146,
4,589 and 4,083 moment-sentence pairs for training, vali-
dation and testing, respectively. We report the evaluation
result on the test set for fair comparison.
ActivityNet Captions is originally designed for video cap-
tioning and recently introduced into temporal sentence
grounding. It contains 37,417, 17,505 and 17,031 moment-
sentence pairs for training, validation and testing, respec-
tively. We report the evaluation result following [43, 33].
Specially, we adopt the glance annotation released by [6]
for training set, where the temporal boundary is replaced
with the timestamp ¢ uniformly sampled within the original
temporal boundary.

4.2. Evaluation Metric and Implementation Details

Evaluation Metric. Following previous works [9, 43],
we evaluate our model with metric ‘R@n,loU=m’, which
means the percentage of at least one of the top-n results
having Intersection over Union (IoU) larger than m. Specif-
ically, we report the results with m € {0.5,0.7} for



Charades-STA, m € {0.3,0.5,0.7} for TACoS and Activi-
tyNet Captions, and n € {1, 5} for all datasets.
Implementation Details. In this work, our main frame-
work is extended from MMN [33] and most of experiment
settings keep the same. For fair comparison, following [33],
we adopt off-the-shelf video features for all datasets (VGG
feature for Charades and C3D feature for TACoS and Ac-
tivityNet Captions). Specifically, the dimension of joint fea-
ture space d is set to 256 and 7 is set to 0.1. In SA-GCL, we
set the k£ as 10, 20 and 20 for Charades, TACoS and Activ-
ityNet Captions, respectively. The o in Eq. (2) is set to 0.3,
0.2 and 0.6 for Charades, TACoS and ActivityNet Captions.
In DGA, T and « is set as 0.9 and 0.7, respectively.

4.3. Comparisons with the State-Of-The-Art

In order to provide comprehensive analysis, we com-
pare the proposed D3G with both fully/weakly/glance su-
pervised methods. As shown in Table 1, Table 2 and Ta-
ble 3, D3G achieves highly competitive results on three
datasets under glance supervision, and achieves compara-
ble performance compared with fully supervised methods.
Note that we highlight the best value for each setting re-
spectively. Based on the experimental results, we can draw
the following conclusions:

(1) Glance annotation provides more potential to achieve
better performance for temporal sentence grounding with
lower annotation cost. Although it is not entirely fair to
directly compare D3G with other weakly supervised meth-
ods due to introducing extra supervision, D3G significantly
exceeds most of weakly supervised methods by a large mar-
gin with trivial increment of annotation cost. Since PS-VTG
and PFU adopt more robust I3D feature, they obviously out-
perform D3G on Charades-STA. However, D3G instead is
superior to PS-VTG on more challenging TACoS with same
features. Besides, weak supervised methods are often not
tested on TACoS, where the videos are very long and con-
tain a large number of target moments. However, D3G ob-
tains promising performance and outperforms ViGA by a
large margin on TACoS as shown in Table 2.

(2) D3G effectively exploits the information provided by
glance annotation and mines more moments of high qual-
ity for training compared with ViGA. Due to the limitations
of fixed scale Gaussian function and fixed sliding window,
ViGA fails to mine accurate candidate moments to learn
a well-aligned joint embedding space. Instead, D3G gen-
erates a wide range of candidate moments and samples a
group of reliable candidate moments for group contrastive
learning. Compared to ViGA, D3G achieves obvious gains
5.08% and 3.5% at R@1 IoU=0.5 and R@1 IoU=0.7 on
Charades-STA, respectively. Specially, significant improve-
ments are obtained at R@5 on three datasets.

(3) D3G substantially narrows the performance gap be-
tween weakly/glance supervised methods and fully super-

R@1 R@5
Method IoU=0.5 IoU=0.7 | IoU=0.5 IoU=0.7
MAN [41] 41.21 20.54 83.21 51.85
2D-TAN [43] 39.70 23.31 80.32 51.26
SSCS [7] 43.15 25.54 84.26 54.17
MMN [33] 47.31 27.28 83.74 58.41
CRM [12] 34.76 16.37 - -
CNM [44] 35.43 15.45 - -
LCNet [38] 39.19 18.87 80.56 45.24
CPLT [45] 32.27 14.22 78.34 43.45
PS-VTG* [36] | 39.22 20.17 - -
PFU* [15] 54.66 28.34 - -
VIGA* [6] 36.56 16.10 48.90 25.86
D3G 41.64 19.60 79.25 49.30

Table 1. Performance comparison on Charades-STA under differ-
ent supervision settings. Top:full supervision, Middle: weak super-
vision, Bottom:glance supervision. fwe reproduce the results with
official code and VGG features for fair comparison. *we repro-
duce the results with official code for results at R@5.% indicates
the method utilizes I3D features.

Method R@1 R@5

T0U=0.3 | 10U=0.5 | 10U=0.7 | IoU=0.3 | ToU=0.5 | ToU=0.7
CTRL [9] 18.32 | 13.30 - 36.69 | 25.42 -
2D-TAN [43]| 37.29 | 25.32 - 57.81 | 24.04 -
SSCS [7] 41.33 | 29.56 - 60.65 | 48.01 -
MMN [33] 38.57 | 27.24 - 65.31 | 50.69 -
MAT [42] 48.79 | 37.57 - 67.63 | 57.91 -
VIGA™ [6] 20.82 | 9.52 3.10 | 27.92 | 15.35 | 6.10
PS-VTG [36] | 23.64 | 10.00 | 3.35 - - -
D3G 27.27 | 12.67 | 4.70 | 54.61 | 31.34 | 12.35

Table 2. Performance comparison on TACoS under different super-
vision settings.Top:full supervision, Bottom:glance supervision.
*we reproduce the results with official code for results at R@5.

vised methods. Specifically, D3G already surpasses previ-
ous method (e.g., CTRL) on both TACoS and ActivityNet
Captions. Undeniably, there are still non-negligible margin
compared to the state-of-the-art fully supervised methods
(e.g., MMN). Note that D3G is very concise and not embed-
ded with auxiliary module (e.g., MLM used in [45]). D3G
still can be enhanced with some complementary modules.

4.4. Ablation Study

To validate the effectiveness of different components of
the proposed D3G and investigate the impact of hyper-
parameters, we perform ablation studies on Charades-STA.
Effectiveness of SA-GCL and DGA. Since L4y is the
only loss of D3G, to validate the effectiveness of SA-GCL,
we need to simplify the SA-GCL module as a baseline.
Specifically, we only sample the top-1 positive moment to
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Figure 5. Effect of different hyper-parameters on Charades-STA dataset.
Method R@1 R@5 Module R@1 R@5
10U=0.3 | 10U=0.5 | 10U=0.7 | IoU=0.3 | ToU=0.5 | ToU=0.7 SA-GCL DGA |IoU=0.5 IoU=0.7 | IoU=0.5 IoU=0.7
CTRL [9] 4743 | 29.01 | 10.34 | 75.32 | 59.17 | 37.54 Vi 5.08 0.81 14.78 3.36
2D-TAN [43]] 59.46 | 44.51 | 26.54 | 85.53 | 77.13 | 61.96 Vai v 13.92 331 33.55 11.77
LGI [20] 58.52 | 41.51 | 23.07 - - - 4051 16.10 7441 4331
SSCS [7] 61.35 | 46.67 | 27.56 | 86.89 | 78.37 | 63.78 j v 41.64 19.60 79'25 49'30
MMN [33] 65.05 | 48.59 | 29.26 | 87.25 | 79.50 | 64.76 : . : :
MAT [42] - 48.02 | 31.78 - 78.02 | 63.18 ) )
Table 4. Effectiveness of SA-GCL and DGA in D3G on Charades-
CRM [17] 55.26 | 32.19 - - - - STA. v T denotes an simplified implementation of SA-GCL.
CNM [44] 55.68 | 33.33 - - - -
LCNet [38] | 48.49 | 26.33 - 82.51 | 62.66 -
CPL [45] 53.67 [ 3124 | - |63.05|43.14| - Types R@l R@5
VIGA® [6] | 59.78 | 35.39 | 16.25 | 72.19 | 53.19 | 32.69 GW SC | IoU=05 IoU=07 | IoU=05 IoU=07
PS-VTG [36] | 59.71 | 39.59 | 21.98 - - - v 38.09 16.10 66.53 36.51
PFU [15] 59.63 | 36.35 | 16.61 - - - v 25.67 9.57 65.43 38.52
D3G 58.25 | 36.68 | 18.54 | 87.84 | 74.21 | 52.47 v v 40.51 16.10 74.41 4331

Table 3. Performance comparison on ActivityNet Captions under
different supervision settings.Top:full supervision, Middle: weak
supervision, Bottom:glance supervision. *we reproduce the results
with official code for results at R@5.

compute the normal contrastive loss (degraded to simpli-
fied MMN) as shown in the first row of Table 4. However,
the top-1 moment tends to be the shortest moment and has
small overlap with target moment, which is decided by the
intrinsic characteristic of 2D-TAN. Therefore, the perfor-
mance of baseline is undoubtedly very poor, which demon-
strates that the main improvement of D3G is not brought
by the backbone of MMN. This phenomenon then encour-
ages us to sample a group of positive moments in SA-GCL.
With full SA-GCL, the model obtains notable performance
gains. Moreover, we introduce the DGA to alleviate annota-
tion bias and model some complex target moments consist-
ing of multiple events. After equipped with DGA, D3G and
simplified D3G achieve obvious performance improvement.
Impact of Sampling Strategy. In SA-GCL, sampling a
group of reliable positive moments is of great importance.
We investigate the impacts of two priors: Gaussian weight
and semantic consistency, respectively. As shown in the first
row of Table 5, we sample top-k positive moments accord-

Table 5. Impact of different strategies used to sample positive mo-
ments for SA-GCL on Charades-STA. GW: Gaussian weight, SC:
semantic consistency.

ing to the Gaussian prior weight. An alternative scheme is
that we sample top-k positive moments according to the se-
mantic consistency scores between candidate moments and
query sentence. However, both of them obtain sub-optimal
performance. This is because Gaussian prior weight is not
always reliable due to the annotation bias and semantic con-
sistence scores are highly dependent on the stability of fea-
tures. Therefore, we finally fuse these two priors to obtain
relatively reliable prior. As shown in the third row of Ta-
ble 5, obvious performance gains are obtained after both of
them are utilized, which demonstrates that these two priors
indeed complement each others.

Effect of different hyper-parameters. As shown in Fig-
ure 5, we investigate three critical hyperparameters in D3G.
As verified in Table 4, sampling enough latent positive mo-
ments is beneficial to mining target moment for training. As
shown in Figure 5 (a), the performance gains increase ob-
viously as the k increases. However, it begins to decrease



R@1 R@5
Method |y 05 1oU=07 | ToU=05  IoU=07
ViGA 36.56 16.10 48.90 25.86
D3G 41.64 19.60 79.25 49.30

VIGA™ | 33.66(_2.00) 14.65(_1.45) |47.45 145 2551 035
D3GT [40.19( 145 19.62(10.02) |78:90( 035 4941 (1011)

Table 6. Performance comparison on Charades-STA with extreme
glance annotation. T indicates according method is trained with
extreme glance annotations.

after the k reaches a specific value. We argue that selecting
excessive positive moments tends to incorporate some false
positive moments and therefore degrades the performance.
We finally set the k£ to 10 for Charades-STA, which bal-
ances well the performance and computational cost. As for
hyperparameter o, it essentially decides the width of Gaus-
sian distribution. A larger o can well characterize the target
moment of longer duration and vice versa. We vary the o
from 0.1 to 0.5, and observe that value 0.3 is relatively suit-
able for the Charades-STA dataset. As for hyperparameter
T, in Eq. (8), it controls the degree of dynamic Gaussian
prior adjustment. We conduct experiments with relevance
thresholds around 0.9. A small threshold tends to introduce
interference while a large threshold fails to find the neigh-
bor frames with consistent semantic. As shown in Figure 5
(c), the moderate threshold 0.9 relatively balances the afore-
mentioned dilemma.

Tolerance to Extreme Glance Annotation. In order to
verify the ability of addressing extreme glance annotation,
we first generate extreme glance annotation, where only the
positions near the start/end timestamps will be sampled as
glance g. As shown in Table 6, both VIGA* and D3G™
are confronted with the performance degradation at some
metrics(e.g., R@1 IoU=0.5). However, the performances of
D3G are relatively stable compared to ViGA, which demon-
strate that D3G indeed is able to alleviate annotation bias.

4.5. Qualitative Analysis

To clearly reveal the effectiveness of our method, we
visualize some qualitative examples from the test split of
Charades-STA dataset and ActivityNet Captions dataset. As
shown in Figure 6, the proposed D3G achieves more ac-
curate localization of target moment compared to ViGA.
Specifically, ViGA cannot well align the visual content
and semantic information and tend to be disturbed by ir-
relevant content, which may be caused by the annotation
bias. Instead, D3G utilizes SA-GCL and DGA to alleviate
the annotation bias, which enables D3G to well align the
query with the corresponding moment. Moreover, the DGA
adopts multiple Gaussian functions to model target mo-
ment, which is beneficial to representing the complete dis-
tribution of complex moments consisting of multiple events.
As shown in Figure 6 (b), D3G still effectively localizes the

Query: person starts playing games on a laptop.

*
GT| . 219s5-3438s
vical  [NSSEEEo050RN 0 |
D3G | © 2161s-3458s

(a)
Query: The men cook together while mixing in more
ingredients and presenting it on a plate.

duration: 34.58 s

) =)

L‘

duration: 121.84 s

viga|  II0GSSNOSSSREEE |

GT

D3G | . 6853s-11803s

(b)
Figure 6. Qualitative examples of top-1 predictions. (a) and (b)
is from the Charades-STA dataset and the ActivityNet Captions
dataset, respectively. GT indicates the ground truth temporal
boundary.

complex moments while ViGA misses the last events “rep-
resent it on a plate”. More qualitative examples will be pro-
vided in Supplementary Materials.

5. Conclusion

In this study, we investigate a recently proposed task,
Temporal Sentence Grounding with Glance Annotation.
Under this setting, we propose a Dynamic Gaussian
prior based Grounding framework with Glance annota-
tion, termed D3G. Specifically, D3G consists of a Semantic
Alignment Group Contrastive Learning module (SA-GCL)
and a Dynamic Gaussian prior Adjustment module (DGA).
SA-GCL aims to mine a wide range of positive moments
and align the positive sentence-moment pairs in the joint
embedding space. DGA effectively alleviates the annota-
tion bias and models complex query consisting of multiple
events via dynamically adjusting the Gaussian prior with
multiple Gaussian functions, promoting the precision of lo-
calization. Extensive experiments show that D3G signifi-
cantly narrows the performance gap between fully super-
vised methods and glance supervised methods. Without ex-
cessive interaction of visual-language, D3G provides a con-
cise framework and a fresh insight to the challenging tem-
poral sentence grounding under low-cost glance annotation.
Limitations. Although D3G achieves promising improve-
ments with glance annotations, it still has some limitations.
In this paper, the DAG adjusts Gaussian prior via the com-
bination of multiple fixed scale Gaussian functions. It fails
to scale down the Gaussian distribution to fit the small mo-
ments. It is expected to explore dynamic learnable Gaussian
functions to model moment of arbitrary duration in future
work. Besides, the sampling strategy for SA-GCL is still
not enough flexible to sample accurate positive moments.
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Appendix

A. Effectiveness of SA-GCL and DGA

To further analyze the effectiveness of SA-GCL and
DGA, we provide more detailed experimental results on
ActivityNet Captions and TACoS datasets as shown in Ta-
ble 7 and Table 8. Following the main manuscript, we re-
gard the simplified implementation of SA-GCL as a base-
line. After being equipped with the complete SA-GCL,
our model achieves significant improvements on both Ac-
tivityNet Captions and TACoS. This phenomenon demon-
strates that sampling enough positive moments for con-
trastive learning is of great importance. Additionally, we
further incorporate the DGA module for alleviating the an-
notation bias and modeling complex target moments. Since
the ActivityNet Captions dataset has a large number of com-
plex query sentences consisting of multiple events, D3G
obtains notable performance gains on ActivityNet Cap-
tions(e.g. 9.03% at R@5 IoU=0.7). However, TACoS is still
challenging for D3G due to the dense distributions of target
moments.

Module R@l R@5
SA-GCL DGA |IoU=0.5 IoU=0.7 | IoU=0.5 IoU=0.7
val 0.83 0.28 1.78 0.58
v 32.65 16.00 65.48 43.44
v v 36.68 18.54 74.21 52.47

Table 7. Effectiveness of SA-GCL and DAG in D3G on Activi-
tyNet Captions. v'T denotes an simplified implementation of SA-
GCL.

Module R@1 R@5
SA-GCL DGA | IoU=0.5 ToU=0.7 | IoU=0.5 IoU=0.7
vt 2.97 0.37 5.40 1.10
v 11.95 420 29.07 10.30
v v 12.67 4770 3134 1235

Table 8. Effectiveness of SA-GCL and DAG in D3G on TACoS.
vt denotes an simplified implementation of SA-GCL.

B. Effect of different hyper-parameters

In this section, we investigate the effect of two criti-
cal hyperparameters on ActivityNet Captions and TACoS
datasets. As shown in Figure 7 and Figure 8, we report
the changes in performance at four metrics. As for top-k,
the performance increases dramatically as the k increases.
However, the performance gradually achieves saturation af-
ter the k reaches 15. We finally select k£ = 20 for both Ac-
tivityNet Captions and TACoS. As for o, the ActivityNet
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Figure 7. Effect of top-k and o on ActivityNet Captions dataset.

Captions dataset tends to prefer large values while small
values are more suitable for the TACoS dataset. This is be-
cause the former contains a large number of long target mo-
ments while the latter contains numerous short target mo-
ments. As shown in Figure 7 and Figure 8, we eventually
select o = 0.6 and 0 = 0.2 for ActivityNet Captions and
TACoS for optimal performance, respectively.

C. Qualitative Analysis

In this section, we provide more qualitative examples
from the test split of the Charades-STA dataset, ActivityNet
Captions dataset, and TACoS dataset. For each video, we
select two queries for analysis. As shown in Figure 9 (a),
D3G locates the target moment accurately while ViGA ig-
nores the reason at the front of the target moment, given
Query 1. However, D3G is inferior to ViGA in some cases
such as Query 2. As for complex queries in ActivityNet
Captions, D3G still localizes a moment with a large over-
lap with the target moment. Since sentence-level features
may lose some information about specific events, D3G can-
not perceive accurate boundaries for some complex queries,
such as Figure 9 (b) Query 2. It is expected to explore event-
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Figure 8. Effect of top-k and o on TACoS dataset.

level features for queries consisting of multiple events in
the future. TACoS is the most challenging dataset, where
the videos have long durations and contain a large number
of moment-sentence pairs. As shown in Figure 9 (c), we
observe that D3G fails to locate a simple query of short du-
ration from the long video, given Query 1. However, D3G
accurately locates the target moment of long duration given
Query 2. Note that D3G well attends to the number “the
last two” of the query while ViGA fails to attend to such in-
formation and locates irrelevant moments. As observed in
Figure 9, D3G is superior to ViGA, which is consistent with
the experimental results in the main manuscript. However,
D3G still has some limitations and needs to be improved in
the future.



Query 1: person laughing because they see something funny on the television. duration: 25.17 s
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Query 2: a person in their dining room is running around.

Query 1: A man and a woman are standing outside at a beach in the sand talking while the lady
holds a brown paper bag in her hand and a man begins filming them. duration: 213.42 s
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Query 2: The teams begin to get extremely individual and add words and feathers to their
masterpiece before the man and lady come around to judge them.
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Figure 9. Qualitative examples of top-1 predictions. (a), (b) and (c) is from the Charades-STA dataset, the ActivityNet Captions and the
TACoS dataset, respectively. GT indicates the ground truth temporal boundary.



